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Synthesis of an N-glycan decasaccharide of the hybrid type
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Abstract—A hybrid-type N-glycan decasaccharide GlcNAcMan7GlcNAc2 was synthesized from the pentasaccharide GlcNAc-
Man2GlcNAc2 as an advanced intermediate and an acyl-protected pentamannosyl donor. Benzyl mannoside was regioselectively
benzoylated and glycosylated at OH-3 and OH-6 with a dimannoside to give the 3,6-branched pentamannoside. Coupling of the
two pentasaccharides furnished the target decasaccharide in 60% yield. Deprotection of the base labile functions furnished a
hybrid-type N-glycan decasaccharide functionalized for the conjugation with peptides or proteins.
� 2004 Elsevier Ltd. All rights reserved.
The sugar moieties of glycoproteins are responsible for
many of their biological and physicochemical proper-
ties.1 O-Glycans are oligosaccharides from glycoproteins
linked to the hydroxyl groups of serine or threonine
whereas N-glycans are bound to the amide nitrogen of
the side chain of asparagine. N-glycans share a common
pentasaccharide core structure (Man3GlcNAc2) and can
be distinguished according to their carbohydrate exten-
sions into high-mannose, complex and hybrid type.2

Hybrid-type N-glycans were found to be essential in
neuronal development3 and also to be associated with
tumor glycoproteins.4 By use of an engineered strain
of P. pastoris 5 glycoproteins can be obtained carrying
predominantly mammalian-like hybrid-type N-glycans.
Recently, a first chemical synthesis of a hybrid-type
N-glycan linked to a peptide was published.6 We have
previously developed efficient chemical and enzymatic
syntheses for a series of N-glycans of the complex-type
including the incorporation of core-fucose or bisecting
residues.7 The resulting modular system of building
blocks was successfully extended to yield hybrid-type
N-glycans (D). Retrosynthetic analysis of the decasac-
charide D led to pentasaccharide A,8 dimannosyl donor
B and selectively acylated benzylmannoside C (Fig. 1).

It was planned to incorporate the oligomannosyl part of
the hybrid-type N-glycan as a single pentamannoside
building block (5, Fig. 2). For the synthesis of the
required branched pentamannoside highly diverse
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approaches were reported.9 However, nearly all of these
strategies utilize permanent benzyl-type protective
groups, which may lead to difficulties in the final depro-
tection steps. In order to establish a synthetic access to a
pentasaccharide donor bearing exclusively acyl protec-
tion we focussed on the disaccharide B and the appro-
priately protected acceptor C as key building blocks.
The peracetylated dimannoside 1 was obtained accord-
ing to the published procedure10 and subsequently con-
verted to the corresponding ethylthioglycoside B by
activation with tin(IV) chloride (Fig. 2).

For the synthesis of the desired pentamannoside a build-
ing block for the central mannoside with unprotected
3,6-OH-groups was prepared. Kong and co-workers9f

used a 1,2-ethylidene mannose building block, which
requires the conversion into a donor and additional pro-
tection of the free hydroxy functions after the glycosyl-
ation step. In an earlier publication9e a four-step
reaction sequence was applied to obtain the anomeric
allyl derivative of the desired acceptor C. To shorten this
route we envisioned the orthoester-isomerization
approach11 as suggested by Oscarsson and Svahnberg.12

The selective protection was carried out by reacting a-
benzylmannoside13 with trimethylorthobenzoate in the
presence of an acid catalyst. In a one-pot procedure
the intermediate bis-orthobenzoate was hydrolyzed in
aqueous TFA to give the 2,4-dibenzoyl-protected accep-
tor C (48%), which could easily be separated from the
2,6-isomer (37%) by column chromatography. The ana-
logous reaction was also performed with triethylortho-
acetate, however, the separation of the resulting
isomeric acetates by flash chromatography was not
possible. When reacting the acceptor C with three
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Figure 1. Building blocks employed for the synthesis of the hybrid decasaccharide D.
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Figure 2. Reagents and conditions: (a) EtSH, SnCl4, CH2Cl2, (68%); (b) (1) PhC(OMe)3, TFA, MeCN; (2) 80% TFA in H2O, [(1)–(2) 48%]; (c) B,

NIS, TfOH, molecular sieves 4 Å, CH2Cl2, �10 �C (65%); (d) H2, PdOxH2O, MeOH, AcOH (63%); (e) DBU, Cl3CCN, CH2Cl2, 0 �C (88%).
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equivalents of donor B both hydroxyl functions were
elongated with a disaccharide leading to the desired
pentamannoside 3 in 65% yield. The benzyl protecting
group at the anomeric position of 3 was removed by
hydrogenolysis and the resulting hemiacetal was
converted to the trichloroacetimidate 5 by addition of
trichloroacetonitrile and DBU (Fig. 3).

With donor 5 in hands we investigated the final coupling
step of the two pentasaccharides A and 5. Using 2
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Figure 3. Reagents and conditions: (a) 5, BF3–OEt2, molecular sieves 4 Å, CH2Cl2; �45 �C (60%); (b) (1) ethylenediamine, n-BuOH, 90 �C, 48 h; (2)
Ac2O, pyridine; (3) MeNH2 (41% in H2O) [(1)–(3) 78%].
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equivalents of donor 5 at �45 �C in dichloromethane
and BF3–OEt2 as an activator, the decasaccharide 6
was obtained in a yield of 60% without optimization.
The structure of the hybrid-type N-glycan 6 was
confirmed by 2D NMR spectroscopy (TOCSY,
NOESY, HMBC, HMQC-COSY, HMQC-TOCSY)14

and ESI-MS.15 Cleavage of the esters and phthalimido
groups was performed by heating the oligosaccharide 6
with ethylene diamine in n-butanol16 and was monitored
by HPLC/ESI-TOF-MS. It was found that after 24 h of
deprotection about one third of the oligosaccharide still
carried one benzoyl group, presumably linked to the
sterically less accessible O-4 of the 4�-mannose residue.
After heating for an additional 24 h the deprotection
went to completion. The decasaccharide was then acetyl-
ated with acetic anhydride/pyridine and the O-acetates
were subsequently cleaved by addition of methylamine
(41% in water). The deprotected decasaccharide was
purified by adsorption on a SepPak-C-18-cartridge and
elution with a step gradient of acetonitrile in water fur-
nishing the target molecule 7, in 78% yield over the three
steps. The decasaccharide 7 displays a hybrid-type N-
glycan (D) functionalized with an anomeric azido group,
which allows incorporation of the N-glycan into glyco-
peptides and other glycoconjugates.17

In summary a rapid access was developed to N-glycans
of the hybrid-type following a modular approach. The
key building block for the oligomannosyl part display-
ing only ester protection was obtained by a short synthe-
sis and was efficiently coupled to give the target
decasaccharide suitable for studies in glycobiology.
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