

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 691-694

Tetrahedron Letters

Synthesis of an N-glycan decasaccharide of the hybrid type

Xaver Schratt and Carlo Unverzagt*

Bioorganische Chemie, Gebäude NWI, Universität Bayreuth, 95440 Bayreuth, Germany Received 15 October 2004; revised 19 November 2004; accepted 22 November 2004

Abstract—A hybrid-type *N*-glycan decasaccharide GlcNAcMan₇GlcNAc₂ was synthesized from the pentasaccharide GlcNAc-Man₂GlcNAc₂ as an advanced intermediate and an acyl-protected pentamannosyl donor. Benzyl mannoside was regioselectively benzoylated and glycosylated at OH-3 and OH-6 with a dimannoside to give the 3,6-branched pentamannoside. Coupling of the two pentasaccharides furnished the target decasaccharide in 60% yield. Deprotection of the base labile functions furnished a hybrid-type *N*-glycan decasaccharide functionalized for the conjugation with peptides or proteins. © 2004 Elsevier Ltd. All rights reserved.

The sugar moieties of glycoproteins are responsible for many of their biological and physicochemical properties.¹ O-Glycans are oligosaccharides from glycoproteins linked to the hydroxyl groups of serine or threonine whereas N-glycans are bound to the amide nitrogen of the side chain of asparagine. N-glycans share a common pentasaccharide core structure (Man₃GlcNAc₂) and can be distinguished according to their carbohydrate extensions into high-mannose, complex and hybrid type.² Hybrid-type N-glycans were found to be essential in neuronal development³ and also to be associated with tumor glycoproteins.⁴ By use of an engineered strain of *P. pastoris* ⁵ glycoproteins can be obtained carrying predominantly mammalian-like hybrid-type N-glycans. Recently, a first chemical synthesis of a hybrid-type N-glycan linked to a peptide was published.⁶ We have previously developed efficient chemical and enzymatic syntheses for a series of *N*-glycans of the complex-type including the incorporation of core-fucose or bisecting residues.⁷ The resulting modular system of building blocks was successfully extended to yield hybrid-type N-glycans (D). Retrosynthetic analysis of the decasaccharide D led to pentasaccharide A,⁸ dimannosyl donor **B** and selectively acylated benzylmannoside **C** (Fig. 1).

It was planned to incorporate the oligomannosyl part of the hybrid-type N-glycan as a single pentamannoside building block (5, Fig. 2). For the synthesis of the required branched pentamannoside highly diverse

Keywords: N-glycan; Hybrid type; Oligosaccharide; Glycoprotein.

* Corresponding author. Tel.: +49 921 552670; fax: +49 921 555365; e-mail: carlo.unverzagt@uni-bayreuth.de approaches were reported.⁹ However, nearly all of these strategies utilize permanent benzyl-type protective groups, which may lead to difficulties in the final deprotection steps. In order to establish a synthetic access to a pentasaccharide donor bearing exclusively acyl protection we focussed on the disaccharide **B** and the appropriately protected acceptor **C** as key building blocks. The peracetylated dimannoside **1** was obtained according to the published procedure¹⁰ and subsequently converted to the corresponding ethylthioglycoside **B** by activation with tin(IV) chloride (Fig. 2).

For the synthesis of the desired pentamannoside a building block for the central mannoside with unprotected 3,6-OH-groups was prepared. Kong and co-workers^{9f} used a 1,2-ethylidene mannose building block, which requires the conversion into a donor and additional protection of the free hydroxy functions after the glycosylation step. In an earlier publication^{9e} a four-step reaction sequence was applied to obtain the anomeric allyl derivative of the desired acceptor C. To shorten this route we envisioned the orthoester-isomerization approach¹¹ as suggested by Oscarsson and Svahnberg.¹² The selective protection was carried out by reacting α benzylmannoside¹³ with trimethylorthobenzoate in the presence of an acid catalyst. In a one-pot procedure the intermediate bis-orthobenzoate was hydrolyzed in aqueous TFA to give the 2,4-dibenzoyl-protected acceptor C (48%), which could easily be separated from the 2,6-isomer (37%) by column chromatography. The analogous reaction was also performed with triethylorthoacetate, however, the separation of the resulting isomeric acetates by flash chromatography was not possible. When reacting the acceptor C with three

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.11.111

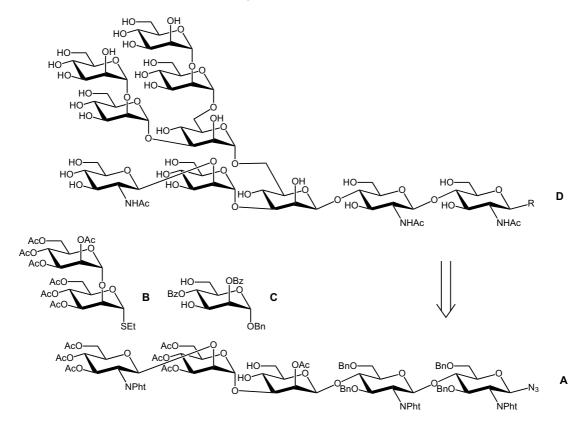
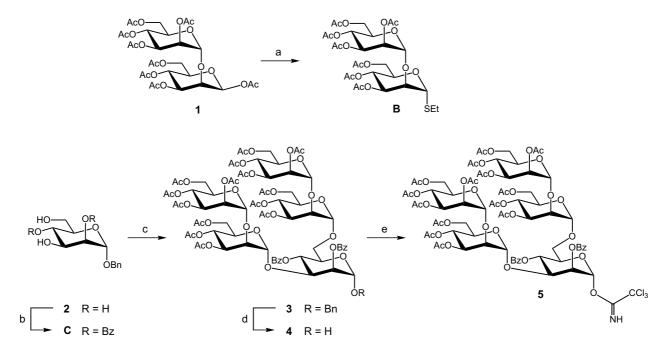



Figure 1. Building blocks employed for the synthesis of the hybrid decasaccharide D.

Figure 2. Reagents and conditions: (a) EtSH, SnCl₄, CH₂Cl₂, (68%); (b) (1) PhC(OMe)₃, TFA, MeCN; (2) 80% TFA in H₂O, [(1)–(2) 48%]; (c) **B**, NIS, TfOH, molecular sieves 4 Å, CH₂Cl₂, -10 °C (65%); (d) H₂, PdOxH₂O, MeOH, AcOH (63%); (e) DBU, Cl₃CCN, CH₂Cl₂, 0 °C (88%).

equivalents of donor **B** both hydroxyl functions were elongated with a disaccharide leading to the desired pentamannoside **3** in 65% yield. The benzyl protecting group at the anomeric position of **3** was removed by hydrogenolysis and the resulting hemiacetal was converted to the trichloroacetimidate **5** by addition of trichloroacetonitrile and DBU (Fig. 3).

With donor 5 in hands we investigated the final coupling step of the two pentasaccharides A and 5. Using 2

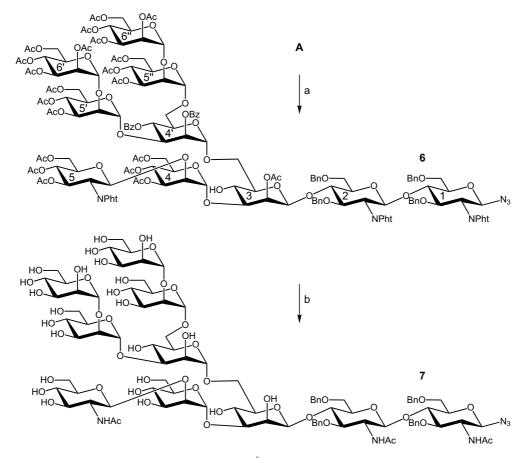


Figure 3. Reagents and conditions: (a) 5, BF₃–OEt₂, molecular sieves 4 Å, CH₂Cl₂; -45 °C (60%); (b) (1) ethylenediamine, *n*-BuOH, 90 °C, 48 h; (2) Ac₂O, pyridine; (3) MeNH₂ (41% in H₂O) [(1)–(3) 78%].

equivalents of donor 5 at -45 °C in dichloromethane and BF_3 -OEt₂ as an activator, the decasaccharide 6 was obtained in a yield of 60% without optimization. The structure of the hybrid-type N-glycan **6** was confirmed by 2D NMR spectroscopy (TOCSY, NOESY, HMBC, HMQC-COSY, HMQC-TOCSY)14 and ESI-MS.¹⁵ Cleavage of the esters and phthalimido groups was performed by heating the oligosaccharide 6 with ethylene diamine in n-butanol¹⁶ and was monitored by HPLC/ESI-TOF-MS. It was found that after 24 h of deprotection about one third of the oligosaccharide still carried one benzoyl group, presumably linked to the sterically less accessible O-4 of the 4'-mannose residue. After heating for an additional 24 h the deprotection went to completion. The decasaccharide was then acetylated with acetic anhydride/pyridine and the O-acetates were subsequently cleaved by addition of methylamine (41% in water). The deprotected decasaccharide was purified by adsorption on a SepPak-C-18-cartridge and elution with a step gradient of acetonitrile in water furnishing the target molecule 7, in 78% yield over the three steps. The decasaccharide 7 displays a hybrid-type Nglycan (**D**) functionalized with an anomeric azido group, which allows incorporation of the N-glycan into glycopeptides and other glycoconjugates.¹⁷

In summary a rapid access was developed to *N*-glycans of the hybrid-type following a modular approach. The key building block for the oligomannosyl part displaying only ester protection was obtained by a short synthesis and was efficiently coupled to give the target decasaccharide suitable for studies in glycobiology.

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie for financial support.

References and notes

- 1. Imperiali, B.; O'Connor, S. E. Curr. Opin. Chem. Biol. 1999, 3, 643-649.
- 2. Dwek, R. A. Chem. Rev. 1996, 96, 683-720.
- 3. Ye, Z.; Marth, J. D. Glycobiology 2004, 14(6), 547-558.
- Kaufmann, B.; Müller, S.; Hanisch, F.-G.; Hartmann, U.; Paulsson, M.; Maurer, P.; Zaucke, F. *Glycobiology* 2004, 14(7), 609–619.
- Vervecken, W.; Kaigorodov, V.; Callewaert, N.; Geysens, S.; De Vusser, K.; Contreras, R. *Appl. Environ. Microbiol.* 2004, 70(5), 2639–2646.
- (a) Mandal, M.; Dudkin, V. Y.; Geng, X.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2004, 43, 2557–2561; (b) Geng, X.; Dudkin, V. Y.; Mandal, M.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2004, 43, 2562–2565.
- (a) Unverzagt, C. Angew. Chem., Int. Ed. 1997, 36, 1989– 1992; (b) Prahl, I.; Unverzagt, C. Tetrahedron Lett. 2000,

41, 10189–10193; (c) Prahl, I.; Unverzagt, C. Angew. Chem., Int. Ed. 2002, 114, 4259–4262; (d) Weiss, H.; Unverzagt, C. Angew. Chem., Int. Ed. 2003, 42, 4261– 4263.

- Unverzagt, C. Angew. Chem., Int. Ed. 1996, 35, 2350– 2353.
- (a) Ogawa, T.; Sasajima, K. Carbohydr. Res. 1981, 93, 67– 81; (b) Merritt, J. R.; Fraser-Reid, B. J. Am. Chem. Soc. 1992, 114, 8334–8336; (c) Grice, P.; Ley, S. V.; Pietruszka, J.; Priepke, H. W. M. Angew. Chem., Int. Ed. 1996, 35(2), 197–200; (d) Matsuo, I.; Isomura, M.; Miyazaki, T.; Sakakibara, T.; Ajisaka, K. Carbohydr. Res. 1998, 305, 401–413; (e) Du, Y.; Zhang, M.; Kong, F. Tetrahedron 2001, 57, 1757–1763; (f) Zhu, Y.; Chen, L.; Kong, F. Carbohydr. Res. 2002, 337, 207–215; (g) Ratner, D. M.; Plante, O. J.; Seeberger, P. H. Eur. J. Org. Chem. 2002, 826–833; (h) Matsuo, I.; Wada, M.; Manabe, S.; Yamaguchi, Y.; Otake, K.; Kato, K.; Ito, Y. J. Am. Chem. Soc. 2003, 125, 3402–3403.
- Varon, D.; Lioy, E.; Patarroyo, M. E.; Schratt, X.; Unverzagt, C. Aust. J. Chem. 2002, 55, 161–165.
- 11. Lemieux, R. U.; Driguez, H. J. Am. Chem. Soc. 1975, 94, 4069–4075.
- 12. Oscarson, S.; Svahnberg, P. Carbohydr. Res. 1998, 309, 207–212.
- Alais, J.; Veyrières, A. J. Chem. Soc., Perkin Trans. 1 1981, 377–381.
- (a) Kessler, H.; Gehrke, M.; Griesinger, C. Angew. Chem., Int. Ed. Engl. 1988, 27(4), 490–536; (b) Kessler, H.; Schmider, P.; Kurz, M. J. Magn. Reson. 1989, 65, 400– 405.
- 15. Compound 6: ESI-MS (acetonitrile, 0.1% formic acid): $C_{168}H_{184}N_6O_{76}M_r$ (calcd) 3501.1, M_r (found) 3524.3 $(M+Na)^+$; $[z]_D^{24} +0.25$ (*c* 2, CH₂Cl₂); ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 8.00-7.48$ (m, 22H, Pht, Bz), 7.25-6.57 (m, 20H, Bn), 5.73-5.63 (m, 2H, H-3⁵, H-4^{4'}), 5.57 (d, *J*_{OH,H-4} = 5.9 Hz, 1H, OH), 5.47 (dd, *J*_{1,2} < 1 Hz,

 $\begin{array}{l} J_{2,3} < 1 \mbox{ Hz, 1H, H-2^{4'}), 5.36 (d, J_{1,2} = 8.2 \mbox{ Hz, 1H, H-1^5)}, 5.29-4.84 (m, 19H, H-1^1, H1^{5'}, H-3^{5''}, H-3^{6''}, H-3^{5''}, H1^{4'}, H1^{2'}, H-2^{6''}, H-4^{6''}, H-4^{5}, H-3^{6'}, H-2^{3}, H-4^{5'}, H-4^{4}, H1^{6''}, H-4^{6''}, H1^{5''}, H-2^{6''}, H-1^{4}), 4.81-4.75 (m, 3H, H-3^{5''}, CH_2Oa, H-3^{4}), 4.70 (d, J_{1,2} < 1 \mbox{ Hz, 1H, H-1^3)}, 4.58 (d, J_{gem} = 13 \mbox{ Hz, 1H, CH}_2Oa'), 4.50-4.36 (m, 7H, H-3^{4'}, 4 \times CH_2O, H1^{6'}, CH_2Ob'), 4.34-4.12 (m, 4H, CH_2Ob, H-2^{4}, H-6a^{5}, H-2^{5}), 4.10-3.43 (m, 33H, H-3^{1}, H-2^{5''}, H-5^{6'}, H-6b^{5}, H-3^{2}, H-6a/b^{4}, H-6a/b^{5'}, H-6a/b^{5''}, H-6a/b^{6'}, H-6a^{4'}, H-6b^{2'}, 3.40-3.15 (m, 6H, H-6a^{1}, H-6a^{3}, H-5^{3}, H-6b^{1}, H-6b^{3}, H-5^{2}), 2.1-1.7 (21s, 63H, Me), ^{13}C NMR (125 \ MHz, DMSO-d_{6}); \delta = 170.2-169.2 (21 \ C=OOAc), 167.6, 167.2 (2C, C=ONPht), 165.0, 164.8 (C=OBz), 138.1, 138.0 (2C), 137.7 (C_qBn), 135.0-133.6 (C4/5Pht, C-4Bz), 130.8-130.5 (C_qPht), 129.5-128.7 (Ar), 128.6, 128.5 (C_qBz), 128.3-127.3 (Ar), 123.6 (C3/6Pht), 99.2 (C-1^{5'}), 98.0 (C-1^{6'}), 97.9 (C-1^{4'}), 97.8 (C-1^{6'}), 97.6 (C-1^{3''}), 97.5 (C-1^{5''}), 97.1 (C-4^$

- Kanie, O.; Crawley, S. C.; Palcic, M. M.; Hindsgaul, O. Carbohydr. Res. 1993, 243, 139–164.
- (a) Mezzato, S.; Schaffrath, M.; Unverzagt, C. Angew. Chem., in press; (b) André, S.; Unverzagt, C.; Kojima, S.; Frank, M.; Seifert, J.; Fink, C.; Kayser, K.; von der Lieth, C.-W.; Gabius, H.-J. Eur. J. Biochem. 2004, 271, 118–134.