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Abstract—A novel method has been developed for stereospecific conversion of 2-phospholene 1-oxides into their corresponding
2,3-epoxides in high yields using sodium peroxide as a reagent. © 2003 Elsevier Science Ltd. All rights reserved.

Methods for the epoxidation of olefins are indispens-
able tools in organic synthesis, in view of the fact that
the epoxide obtained can be transformed further into a
variety of synthetically useful reactions.1 Many classical
reagents have been reported to date for the epoxida-
tion. However, intensive efforts to develop efficient and
reliable protocols for preparing epoxides are required
important in organic synthesis. We describe herein an
efficient method for the stereospecific epoxidation of
2-phospholenes using sodium peroxide as a reagent. To
the best of our knowledge, no method of epoxidation
has hitherto been described in the literature using a
sodium peroxide reagent, particularly on 2- (or 3-)-
phospholene 1-oxides. 2,3-Epoxides of 2-phospholenes
are extremely versatile reactive intermediates in the
synthesis of various nucleoside analogs of phospha
sugar† derivatives that structurally resemble bioactive
normal sugar nucleosides, for example AZT,2 4�-thio-
ddC,3 aristeromycin,4 and ribavarin.5 Our interest in
developing potential inhibitors of HIV led us to the
synthesis of AZT analogs of phospha sugar derivatives.
The epoxidation of 2-phospholene derivatives has been
a key step reaction in the synthesis of AZT analogs of
phospha sugar derivatives from 2-phospholenes.

Epoxidation using m-chloroperbenzoic acid (Prilezhaev
reaction) was reported in 1980 by Quin et al.6 on
2-phospholene oxides which are joined to cycloalkano
groups at the b face. However, 2-phospholene 1-oxides
1a–g were found to be inert to react with m-chloroper-
benzoic acid even if the reaction was conducted in a
basic medium (2N NaHCO3 solution) at reflux temper-
ature for 3 days. In our previous synthetic methods, the
reaction of 1-phenyl-2-phospholene 1-oxide (1a) with
bromine or N-bromoacetamide (NBA) in chloroform–
water or acetone–water at room temperature afforded
2-bromo-3-hydroxy-1-phenylphospholane 1-oxide as a
diastereomeric mixture. Subsequent treatment of the
bromohydrin derivative mixture with aqueous potas-
sium hydroxide at 40–50°C for 1 h afforded a
diastereomeric mixture of erythro and threo 2,3-epox-
ides.7,8 We tried the next step of the reaction to synthe-
size the desired molecule, but the diastereomeric
epoxide mixture impeded the stereospecific formation
of epoxide. Hence, it is indeed essential to prepare a
single 2,3-epoxide isomer of 2-phospholene in order to

Scheme 1. Epoxidation of phospholene oxides.
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† The term ‘phospha sugar’ strictly denotes either replacement of
hemiacetal oxygen, or of C(1), of normal sugar by a phosphorus
moiety.
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obtain the target AZT analogue of the phospha sugar.
To access the formation of a single isomeric 2,3-epox-
ides from 2-phospholenes in high yields, we treated
2-phospholenes 1a–g with sodium peroxide‡ in ethanol
for 4–6 h at 30–45°C.9 The stereospecifically formed
epoxides 2a–e were fairly and exclusively produced in
70–80% yields as outlined in Scheme 1. The best results
were obtained using 4 equiv. of the sodium peroxide
reagent.

The 2,3-epoxides 2a–e obtained via sodium peroxide
oxidation showed only a single peak on the HPLC
chromatogram and also in the 31P NMR spectrum,
revealing the formation of only one isomer, whereas the
2,3-epoxides prepared previously via the bromohydrin
pathway showed two peaks on HPLC and in the 31P
NMR spectrum. On HPLC analysis the major one [i.e.
the erythro ] of these two isomers fit exactly with the
single peak that was prepared by sodium peroxide
route. Addition of 10% Eu(DPM)3 complex10 caused a
downfield shift of the 1H NMR signals of compounds
2a–e. The stereochemistry of product 2a was precisely
determined from X-ray crystallographic analysis. A sin-
gle crystal of compound 2a was developed by recrystal-

lization from ethyl acetate and n-hexane; X-ray
crystallographic study11 of compound 2a afforded its
structure as depicted in Figure 1. From the X-ray
analysis of compound 2a, the torsion angles revealed
the phosphoryl group (P�O) and epoxide oxygen lie in
parallel planes, i.e. the P�O group is in syn fashion to
the epoxide group of C-1, C-2 and thus it proved to be
erythro 2,3-epoxy-1-phenylphospholane 1-oxide (2a).
This protocol was then applied to several substituted
2-phospholenes,12 and the results are summarized in
Table 1.13,14 The yield of the products is slightly
enhanced by the presence of strong electron-withdraw-
ing groups on the phenyl group of substrate 1b; how-
ever, there was no appreciable effect on epoxidation
with electron-donating groups on the phenyl ring.
From the results obtained in Table 1, it should be
pointed out that the epoxidation on substrate 1e pro-
duced 2,3-epoxy-1-hydroxyphospholane 1-oxide 2e by
the conversion of P–OMe to P–OH; however, the selec-
tivity of the reaction remained the same as that of other
products obtained. Surprisingly, the 2-phospholenes 1f
and 1g were not reacted with Na2O2 to give the corre-
sponding epoxides. The reasons for the substituent
effect are being examined after proposing the reaction
mechanism and will be reported in due course.

In summary, we have found a moderate reagent for
stereospecific epoxidation of 2-phospholenes. The over-
all protocol is practical and quite efficient. Further
studies on epoxidation, e.g. detailed study on the sub-
stituent effect and investigation of the generality of this
novel method of epoxidation, are currently under inves-
tigation in our laboratory.
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Table 1. Epoxidation of 2-phospholene 1-oxides 1a–g produced in Scheme 1

R1Entry Substrate R2 Yield (%)aTime (h)

761 1a 5Ph H
80H 62 1b C6H4–NO2 (m)

1c 756HC6H4–OMe (p)3
6H 77C6H4–Cl (m)1d4

1e OMe H 4 70b,c5
No epoxidationMe 66 1f Ph

1g OMe Me 6 No epoxidation7

a Only product 2a is solid, and other products (2b–e) are in a syrupy state.15

b Yield is comparatively low, because nearly 10% of the formed epoxide was converted to enol (1,3-dihydroxy-2-phospholene 1-oxide) formation
as a side product.

c P–OMe was converted as P–OH during epoxidation.

‡ Na2O2 is an explosive reagent; therefore, it is noteworthy to comment on the safety of sodium peroxide reagent. It is a precautionary advice to
open the reagent container in moisture free conditions since it is a moisture sensitive reagent. However, we have not had any unpleasant events
associated with this reagent in our laboratory, although we used a large amount of sodium peroxide for our reactions.
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see, Ref. 6.
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