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Abstract A quick and efficient, one-pot synthesis of

carbazates was accomplished in high yields by the

reaction of various primary, secondary, and tertiary

alkyl halides with a variety of substituted hydrazines

using the benzyltrimethylammonium hydroxide (Tri-

ton-B)=CO2 system. The reaction conditions are mild

with simpler work-up procedures than the reported

methods.

Keywords Alkyl halides; Benzyltrimethylammonium hy-
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Introduction

Organic carbazates have attracted much attention due

to their numerous remarkable medicinal, industrial,

and synthesis applications [1, 2]. They have exten-

sively been used as pharmaceuticals [3], agrochem-

icals [4], intermediates in organic synthesis [5], for

protection of amino groups in peptide synthesis [6],

as linkers in solid phase organic synthesis [7], and as

donor ligands in complexation reactions with transi-

tion metals [8]. To satisfy their demand, their syn-

thesis has been changed from the use of costly and

toxic chemicals like phosgene [9] and its derivatives

[10] directly or indirectly, to the abundantly avail-

able cheap and safe reagents like CO2. However,

their formation using CO2 employed harsh reaction

conditions, such as use of strong bases, high reaction

temperatures, and long reaction times [11]. Thus, we

were prompted to embark on the improved proce-

dures. Our group [12] has been engaged during the

past several years in the development of new meth-

odologies for the preparation of carbamates, dithio-

carbamates, and related compounds using cheap,

abundantly available, and safe reagents like CO2

and CS2. Recently [13], we have found that benzyl-

trimethylammonium hydroxide (Triton-B) is the best

catalyst for the synthesis of carbamates, dithiocarba-

mates, and dithiocarbonates (xanthates). We report

here an efficient, one-pot synthesis of carbazates

from a variety of primary, secondary, and tertiary

alkyl halides and substituted hydrazines using the

Triton-B=CO2 system.

Results and discussion

Substituted hydrazine was taken in dry DMSO and

purified CO2 gas was bubbled in it at 60�C for

30 min with constant stirring. Now, Triton-B was

slowly added with constant stirring. The reaction

was continued for another 30 min, and then the cor-

responding alkyl halide was added. The reaction was

further continued until completion as checked by

TLC (see Table 1). It is proposed that the O� of the

carbazate ion produced will attack the electrophilic

carbon of the respective alkyl halide to afford carba-

zates in high yields (80–98%) at room temperature

in 3–5 h, as mentioned in Table 1. The reaction

proved to be successful and the desired products
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were isolated and their structures confirmed by vari-

ous spectroscopic and analytical techniques. Thus,

various substituted hydrazines were reacted with a

variety of primary, secondary, and tertiary alkyl

halides using the Triton-B=CO2 system to afford

the corresponding carbazates in good to excellent

yields (Table 1) with the reaction conditions as

shown in Scheme 1.

We tried several solvents like n-heptane, n-hexane,

acetonitrile, benzene, toluene, methanol, dichloro-

methane, chloroform, DMSO, dimethylformamide,

and hexamethylphosphoric triamide of which dry

DMSO proved to be the most suitable one at room

temperature.

In conclusion, we developed a convenient and

efficient protocol for the one-pot, three-component

coupling of various substituted hydrazines with a

variety of primary, secondary, and tertiary alkyl

halides via a CO2 bridge using Triton-B. This meth-

od generates the corresponding carbazates in good to

excellent yields. Furthermore, this method exhibits

substrate versatility, mild reaction conditions, and

experimental convenience. This synthesis protocol

developed is believed to offer a more general method

for the formation of carbon–oxygen bonds essential

to numerous organic syntheses.

Experimental

Chemicals were procured from Merck, Aldrich, and Fluka
chemical companies. Reactions were carried out under
Argon. IR spectra (4000–200 cm�1) were recorded on a
Bomem MB-104-FTIR spectrophotometer using neat tech-
nique, whereas NMRs were scanned on an AC-300F NMR
(300 MHz) instrument using CDCl3 and TMS as internal stan-
dard. Elemental analysis were conducted by means of a Carlo-
Erba EA 1110-CNNO-S analyzer and agreed favorably with
calculated values.

Typical experimental procedure

To a stirred solution (under Ar) of 3 mmol substituted hydra-
zine in 5 cm3 anhyd. DMSO carbon dioxide was continuously
bubbled and 2 cm3 Triton-B were added at 60�C. Then the
mixture was stirred for 0.5 h at which point 3 cm3 of the
required alkyl halide were added over a period of 5 min.
The stirring was further continued until the completion of

Table 1 Conversion of alkyl halides into carbazates 1–16a

Product R1 R2 R3 X R Time=h Yields=%b

1 n-C3H7 H H Br 4-MeO-Ph 3 94
2 PhCH2CH2 H H Br Ph 3 96
3 PhCH2 H H Cl Ph 4 87
4 Ph H H Cl Bn 4.5 92
5 C2H5 Me H Br Bn 4.5 90
6 Ph-4-MeO H H Cl Ph-3-NO2 4.5 85
7 C3H7 H H Br Ph-4-NO2 4.5 85
8 C3H7 H H Br Ph-2,4-NO2 5 80
9 C3H7 H H Br Naphthyl 4.5 83
10 C4H9 C4H9 H Br Ph 4.5 89
11 C4H9 C4H9 C4H9 Br Ph 4.5 88
12 C5H11 H H Cl n-C4H9 3 96
13 C7H15 H H Cl Ph 3 96
14 C9H19 H H Cl n-C4H9 3 98
15 C3H7 C3H7 H Br Ph 4.5 86
16 Ph CH3 H Br Ph 5 82

a All the products were characterized by IR, NMR, and mass spectroscopic data
b Isolated yields

Scheme 1
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reaction (cf. Table 1). The reaction mixture was poured
into 20 cm3 water and the organic layer was extracted with
3�10 cm3 EtOAc. The organic layer was washed with 20 cm3

0.1N HCl, 25 cm3 saturated NaHCO3 solution, 30 cm3 brine,
and then dried (Na2SO4) and concentrated to get the desired
compound.

N0-(4-Methoxyphenyl)hydrazine carboxylic acid butyl ester

(1, C12H18N2O3)

Oil; IR (neat): ���¼ 1680 cm�1; 1H NMR (CDCl3): �¼ 0.96 (t,
3H, J¼ 7.3 Hz), 1.34 (m, 2H), 1.86 (m, 2H), 3.73 (s, 3H), 4.12
(t, J¼ 6.5 Hz, 2H), 4.85 (m, NH), 6.74–7.66 (m, 4H), 8.0 (br,
NH) ppm; 13C NMR (CDCl3): �¼ 13.7, 19.5, 32.5, 63.5,
112.5, 114.9, 134.5, 152.4, 160.6 (C¼O) ppm; MS (EI):
m=z¼ 238.

N0-Phenylhydrazine carboxylic acid 3-phenyl propyl

ester (2, C16H18N2O2)

Oil; IR (neat): ���¼ 1685 cm�1; 1H NMR (CDCl3): �¼ 1.92 (m,
2H), 2.56 (t, 2H, J¼ 7.2 Hz, -PhCH2), 4.10 (t, J¼ 6.5 Hz, 2H),
4.67 (br, NHPh), 6.66–7.12 (m, 10H, Ar–H), 8.0 (br, NH)
ppm; 13C NMR (CDCl3): �¼ 32.4, 34.4, 63.5, 112.6, 119.4,
125.7, 128.8, 129.6, 138.7, 161 (C¼O) ppm; MS: m=z¼ 270.

N0-Phenylhydrazine carboxylic acid phenethyl ester

(3, C15H16N2O2)

Oil; IR (neat): ���¼ 1681 cm�1; 1H NMR (CDCl3): �¼ 2.83
(2H, t, J¼ 6.7 Hz, PhCH2CH2O), 4.42 (t, 2H, J¼ 7.2 Hz,
PhCH2O), 4.77 (br, H, PhNH), 6.69–7.15 (m, 10H, Ar–H),
8.05 (br, NH) ppm; 13C NMR (CDCl3): �¼ 35.5, 65.9, 112.3,
118.6, 128.5, 129.5, 140.3, 142.5, 165.4 (C¼O) ppm; MS:
m=z¼ 256.

N0-Butylhydrazine carboxylic acid benzyl ester

(4, C12H18N2O2)

Oil; IR (neat): ���¼ 1680 cm�1; 1H NMR (CDCl3): �¼ 0.99 (t,
J¼ 7.2 Hz, 3H, CH3), 1.34 (m, 2H, CH2CH3), 1.56 (m, 2H,
CH2CH2CH3), 2.15 (br, NH), 2.66 (m, 2H, NHCH2), 5.13 (s,
2H, PhCH2), 7.10–7.19 (m, 5H, Ar–H), 8.0 (br, NH) ppm; 13C
NMR (CDCl3): �¼ 13.8, 20.3, 31.6, 51.2, 69.3, 126.8, 127.6,
128.5, 141.8, 158 (C¼O) ppm; MS: m=z¼ 222.

N0-Butylhydrazine carboxylic acid sec-butyl ester

(5, C9H20N2O2)

Oil; IR (neat): ���¼ 1681 cm�1; 1H NMR (CDCl3): �¼ 0.98 (t,
J¼ 7.2 Hz, 3H, CH3), 1.15 (t, J¼ 7.0 Hz, 3H, CH3), 1.38 (m,
2H, CH2CH3), 1.42 (d, J¼ 6.5 Hz, 3H, CHCH3), 1.56 (m,
2H, CH3CH2CH2), 2.0 (br, NH), 2.66 (m, 2H, NHCH2),
4.20 (m, CHCH3), 8.0 (br, NH) ppm; 13C NMR (CDCl3):
�¼ 8.2, 13.8, 19.2, 20.5, 29.3, 71.4, 156.9 (C¼O) ppm; MS:
m=z¼ 188.

N0-(3-Nitrophenyl)hydrazine carboxylic acid 4-methoxy-

benzyl ester (6, C15H15N3O5)

Oil; IR (neat): ���¼ 1682 cm�1; 1H NMR (CDCl3): �¼ 3.73 (s,
3H, OCH3), 4.05 (br, H, NHPhOMe), 5.34 (s, 2H), 6.66–7.69
(m, 8H, Ar–H), 8.1 (br, NH) ppm; 13C NMR (CDCl3):

�¼ 69.3, 107.6, 114.8, 118.8, 128.5, 129.9, 133.6, 143.6,
148.7, 160.6 (C¼O) ppm; MS: m=z¼ 317.

N0-(4-Nitrophenyl)hydrazine carboxylic acid butyl ester

(7, C11H15N3O4)

Oil; IR (neat): ���¼ 1682 cm�1; 1H NMR (CDCl3): �¼ 0.99
(t, J¼ 7.2 Hz, 3H, CH3), 1.36 (m, 2H, CH2CH3), 1.57 (m,
2H, OCH2CH2), 4.04 (br, NHArNO2), 6.92–8.15 (m, 4H,
Ar–H), 8.0 (br, NH) ppm; 13C NMR (CDCl3): �¼ 13.8,
21.7, 32.3, 63.7, 113.5, 124.6, 138.8, 143.3, 159 (C¼O)
ppm; MS: m=z¼ 253.

N0-(2,4-Dinitrophenyl)hydrazine carboxylic acid butyl ester

(8, C11H14N4O6)

Oil; IR (neat): ���¼ 1681 cm�1; 1H NMR (CDCl3): �¼ 0.98 (t,
J¼ 7.2 Hz, 3H, CH3), 1.36 (m, 2H, CH2CH3), 1.59 (m, 2H,
SCH2CH2), 4.08 (br, NHArNO2), 7.19–9.50 (m, 3H, Ar–H),
8.10 (br, NH) ppm; 13C NMR (CDCl3): �¼ 13.8, 19.3, 31.8,
63.8, 113.6, 119.2, 130.2, 132.8, 139.7, 143.3, 160 (C¼O)
ppm; MS: m=z¼ 298.

N0-Naphth-2-ylhydrazine carboxylic acid butyl ester

(9, C15H18N2O2)

Oil; IR (neat): ���¼ 1681 cm�1; 1H NMR (CDCl3): �¼ 0.96 (t,
J¼ 7.2 Hz, 3H, CH3), 1.36 (m, 2H, CH2CH3), 1.57 (m, 2H,
OCH2CH2), 4.05 (br, H, Ar–NH), 4.12 (t, J¼ 7.0 Hz, 2H),
6.76–7.55 (m, 7H, Ar–H), 8.02 (br, NH) ppm; 13C NMR
(CDCl3): �¼ 13.9, 22.1, 32.5, 33.9, 107.4, 117.2, 121.3, 124.5,
126.6, 127.2, 133.5, 142.6, 161 (C¼O) ppm; MS: m=z¼ 258.

N0-Phenylhydrazine carboxylic acid 1-butylpentyl ester

(10, C16H26N2O2)

Oil; IR (neat): ���¼ 1682 cm�1; 1H NMR (CDCl3): �¼ 0.99 (t,
J¼ 7.2 Hz, 6H, CH3), 1.33 (m, 4H, CH2CH2CH), 1.38 (m, 4H,
CH2CH3), 1.54 (m, 4H, CHCH2), 3.95 (t, OCH), 4.15 (br,
NHAr), 6.66–7.18 (m, 5H, Ar–H), 8.0 (br, NH) ppm; 13C
NMR (CDCl3): �¼ 14.3, 23.1, 28.5, 36.2, 72.7, 112.2,
119.3, 129.0, 142.4, 158 (C¼O) ppm; MS: m=z¼ 278.

N0-Phenylhydrazine carboxylic acid 1,1-dibutylpentyl ester

(11, C20H34N2O2)

Oil; IR (neat): ���¼ 1684 cm�1; 1H NMR (CDCl3): �¼ 0.96
(t, J¼ 7.2 Hz, 9H, CH3), 1.29 (m, 4H, CH2CH2C), 1.33 (m,
4H, CH2CH3), 1.50 (m, 4H, CHCH2), 4.0 (br, H, NH–Ar),
6.67–7.19 (m, 5H, Ar–H), 8.0 (br, NH) ppm; 13C NMR
(CDCl3): �¼ 14.3, 23.5, 26.8, 39.8, 72.4, 112.5, 119.3,
129.6, 142.2, 162 (C¼O) ppm; MS: m=z¼ 334.

N0-Butylhydrazine carboxylic acid hexyl ester

(12, C11H24N2O2)

Oil; IR (neat): ���¼ 1684 cm�1; 1H NMR (CDCl3): �¼ 0.98 (t,
J¼ 7.0 Hz, 6H, CH3), 1.30 (m, 4H, CH2CH2CH2CH3), 1.36
(t, J¼ 7.0 Hz, 2H, CH2CH3), 1.58 (m, 2H, NHCH2CH2), 1.63
(t, J¼ 6.5 Hz, 2H, CH2N), 2.0 (br, 2H, NH), 2.66 (t, 2H,
NHCH2), 4.10 (t, 2H, J¼ 7.2 Hz, OCH2), 8.0 (br, NH) ppm;
13C NMR (CDCl3): �¼ 13.7, 14.1, 20.2, 23.1, 28.6, 31.5, 32.6,
69.5, 164.5 (C¼O) ppm; MS: m=z¼ 216.
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N0-Phenylhydrazine carboxylic acid n-octyl ester

(13, C15H24N2O2)

Oil; IR (neat): ���¼ 1685 cm�1; 1H NMR (CDCl3): �¼ 0.96 (t,
J¼ 7.2 Hz, 3H, CH3), 1.30 (m, 8H, CH2), 1.35 (m, 2H,
CH2CH3), 1.63 (m, 2H, OCH2CH2), 4.0 (br, PhNH), 4.12 (t,
2H, J¼ 7.0 Hz, OCH2), 6.66–7.25 (m, 5H, Ar–H), 8.0 (br,
NH) ppm; 13C NMR (CDCl3): �¼ 14.5, 23.10, 27.5, 30.5,
32.5, 63.6, 112.2, 129.6, 118.9, 142.2, 163 (C¼O) ppm;
MS: m=z¼ 264.

N0-Butylhydrazine carboxylic acid decyl ester

(14, C15H32N2O2)

Oil; IR (neat): ���¼ 1683 cm�1; 1H NMR (CDCl3): �¼ 0.97 (s,
3H, CH3), 0.99 (s, 3H, CH3), 1.29 (m, 12H, CH2), 1.34 (m,
4H, CH2CH3), 1.57 (m, 2H, CH2CH2CH3), 2.0 (br, NH), 2.65
(m, 2H, NHCH2), 4.12 (t, J¼ 7.0 Hz, 2H, OCH2), 8.0 (br, NH)
ppm; 13C NMR (CDCl3): �¼ 13.7, 14.5, 20.3, 23.1, 28.9,
30.6, 30.9, 31.5, 32.5, 63.5, 160 (C¼O) ppm; MS: m=z¼ 272.

N0-Phenylhydrazine carboxylic acid 1-propylbutyl ester

(15, C14H22N2O2)

Oil; IR (neat): ���¼ 1680 cm�1; 1H NMR (CDCl3): �¼ 0.97 (s,
3H, CH3), 1.33 (m, 4H, CH2CH3), 1.54 (m, 4H, CHCH2), 3.95
(m, H, CH–O), 4.1 (br, H, NH–Ar), 6.66–7.22 (m, 5H, Ar–
H), 8.0 (br, NH) ppm; 13C NMR (CDCl3): �¼ 14.5, 20.1, 38.4,
72.8, 112.5, 118.3, 129.6, 143.3, 160 (C¼O) ppm; MS:
m=z¼ 250.

N0-Phenylhydrazine carboxylic acid 1-phenyl ethyl ester

(16, C15H16N2O2)

Oil; IR (neat): ���¼ 1682 cm�1; 1H NMR (CDCl3): �¼ 1.69
(d, J¼ 7.2 Hz, 3H, CH3), 4.2 (br, NH–Ph), 5.42 (m, CH–O),
6.66–7.22 (m, 10Ar–H), 8.0 (br, NH) ppm; 13C NMR
(CDCl3): �¼ 23.4, 74.2, 112.5, 118.9, 126.5, 128.5, 129.7,
141.3, 142.5, 163.5 (C¼O) ppm; MS: m=z¼ 256.
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