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Abstract: New imidazolinium-fused scaffolds are synthesized via
a one-pot, two-step procedure involving a Ugi–Smiles coupling of
mercaptotriazine derivatives with an isocyanide, an aldehyde, and a
primary amine.
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Compared to their related amides, thioamides show an in-
creased reactivity due to the heightened nucleophilicity of
the sulfur atom, enhanced by a rather weak carbon–sulfur
double bond. Their extensive use as synthetic intermedi-
ates for the preparation of various heterocycles,1 as well as
their interesting biological activities as peptidomimetics,2

have spurred chemists on to seek new methods for their
preparation.3 Following our interest on multicomponent
reactions involving isocyanides,4 we have recently dis-
closed a four-component access to complex thioamides
based on the Ugi–Smiles coupling of heteroaromatic mer-
captans (Scheme 1).5

Scheme 1 Ugi–Smiles multicomponent thioamide synthesis

The couplings with mercaptans give rather contrasting re-
sults. Indeed, whereas ortho- and para-nitrothiophenols
fail to give any coupling with an isocyanide, an aldehyde,
and an amine, heteroaromatic mercaptans such as 2-mer-
captobenzooxazoles or benzothiazoles give the expected
adducts in fair to good yields (it is interesting to note that
the corresponding hydroxy derivatives are not reactive

under similar conditions).6 Following our study on pyri-
dine and pyrimidine derivatives, we now wish to report
our results on the behavior of triazines, as well as the
transformation of the resulting thioamides into new im-
idazolinium-fused heterocycles in a one-pot process.

Thiopyridines and thiopyrimidines being prone to interact
in a Ugi–Smiles reaction, we assumed that the introduc-
tion of an additional nitrogen atom in the cycle would fa-
vor the process by lowering the electron density on the
aromatic carbon atom. To our delight, 3-mercapto-1,2,4-
triazines turned out to be among the most efficient acidic
partners in Ugi–Smiles couplings. The four-component
reaction (4-CR) proceeded smoothly at 50 °C in methanol
using stoichiometric amounts of each component. The
reaction seems to be quite general, as various aldehydes;
aliphatic aldehydes, even hindered ones (Table 1, entries
1–9), as well as aromatic aldehydes (Table 1, entry 10)
gave good results. Most noteworthy, the Ugi–Smiles cou-
plings of ketones whose reaction times traditionally range
from 1–10 days are much faster with the triazine 1a as a
surrogate acidic input for the Ugi reaction and give the
corresponding adducts in good yields (Table 1, entry 11–
13).

The efficiency of the triazine 1a in triggering the process
is further demonstrated by the use of the Schöllkopf iso-
cyanide, which forms thiazoles through an Ugi–Smiles–
cyclocondensation cascade (Scheme 2).7

In order to assess the scope of this coupling, two addition-
al mercaptotriazines were prepared by condensing a thio-
semicarbazide and a dicarbonyl compound.8 With the
monosubstituted triazine compound 1b, the 4-CR occurs
with similar yields to those obtained with the triazine 1a,
even in the case of ketones (Table 2, entries 1–4). Howev-
er, the bis(2-pyridinyl)mercaptotriazine (1c) is less effi-
cient in this coupling, as the yields do not exceed 50%
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Scheme 2 Ugi–Smiles–cyclocondensation cascade
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(Table 2, entries 5 and 6). This method constitutes an easy
path to functionalized thioamides that would otherwise be
difficult to obtain.

The high-yielding couplings observed with some of these
triazines prompted us to examine the chemistry of these
adducts in order to establish further one-pot syntheses of

complex heterocycles. Triazines are known to undergo in-
tramolecular [4+2] cycloadditions with the elimination of
nitrogen,9 these reactions having been recently exploited
with Ugi adducts by the Zanze group.10 The initial trials
with the thioamide 2d in toluene at reflux, or even at high-
er temperatures under microwave irradiation, failed to
give any cyclized product. During several attempted acti-

Table 1 Ugi–Smiles Couplings with Triazine 1a

Entry R1COR2 R3NH2 R4NC Product Yield (%)

1 i-BuCHO CyNC 2a 93

2 i-BuCHO CyNC 2b 98

3 i-BuCHO CyNC 2c 79

4 i-BuCHO CyNC 2d 21

5 i-BuCHO 2e 86

6 i-BuCHO 2f 84

7 i-BuCHO 2g 93

8 i-BuCHO 2h 95

9 CyNC 2i 42

10 CyNC 2j 47

11 CyNC 2k 95

12 2l 76

13 2m 78
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vations of the heterocycle with copper salts, traces of a
highly colored product involving a cyclization with the
thioamide function were observed. When one equivalent

of copper(II) trifluoromethanesulfonate was used in tolu-
ene at 110 °C, the triazolino imidazolinium salt 3a was
obtained in a 18% isolated yield (Scheme 3).

Table 2 Couplings with Different Triazines

Entry ArSH R1COR2 R4NC Product and yield (%)

1

1b

i-BuCHO CyNC

2n 74

2 1b i-BuCHO

2o 45

3 1b

2p 53

4 1b CyNC

2q 72

5

1c

i-BuCHO
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6 1c i-BuCHO CyNC
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As this cyclization involves two new functionalities intro-
duced in the Ugi–Smiles step, we decided to focus on this
reaction and to optimize the formation of this fused sys-
tem in a one-pot sequence starting directly from the four
components involved in the Ugi coupling. With the tri-
azine 1b, isovaleraldehyde, allylamine, and cyclohexyl-
isocyanide (Table 2, entry 1), we devised conditions in
which the Ugi–Smiles step is performed in refluxing tolu-
ene (1 M) for two hours followed by dilution of the medi-
um with toluene to a concentration of 0.1 M and addition
of the copper salt. The final imidazolinium salt 3b was ob-
tained in 69% isolated yield after refluxing the mixture for
three hours (Table 3, entry 1). The presence of the triflate
counterion was confirmed by an X-ray crystal structure
analysis performed on this imidazolinium salt
(Figure 1).11

The diphenyl-substituted triazine 1a behaved similarly,
giving the fused imidazolinium triflate 3c (Table 3, entry

Table 3 Formation of Different Imidazolinium Salts

Entry ArSH R2NH2 Time (step 1) Time (step 2) Product and yield

1

1b

2 h 1 h

3b 69%

2

1a

2 h 36 h

3c 63%

3a 4 d 2 h

3d 85%

4 2 h 12 h

3e 95%

a The first step was performed neat at 90 °C, followed by the copper addition in toluene (to a concentration of 0.1 M).
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2). Such a process can be extended to other nitrogenated
heterocycles. For instance, when submitted to a neat four-
component coupling – with allylamine, isovaleraldehyde,
and cyclohexylisocyanide – followed by a copper-
induced cyclization, 2-mercaptopyrimidine gave the cor-
responding pyrimidinyl imidazolinium salt in a 85% yield
(Table 3, entry 3), whilst the pyridinyl analogue was ob-
tained in excellent yields as well (Table 3, entry 4).

In conclusion, we have disclosed a new family of highly
efficient acidic inputs in Ugi–Smiles reactions. Mercap-
totriazines, the diphenyl-substituted 1a in particular, al-
low the formation of Ugi–Smiles thioamides with short
reaction times and with better yields than the related reac-
tions with mercapto- or hydroxypyridines and pyrim-
idines. The synthetic value of these thioamides12 has been
further demonstrated in a one-pot preparation of fused im-
idazolinium salts.

Typical Procedure for the Synthesis of Thioamide 2a (Table 1, 
Entry 1)
To a solution of 265 mg (1.0 mmol, 1.0 equiv) of 5,6-diphenyl-
1,2,4-triazine-3-thiol in MeOH (1 mL) were added allylamine (75
mL, 1.0 mmol, 1.0 equiv), isovaleraldehyde (108 mL, 1.0 mmol, 1.0
equiv), cyclohexylisocyanide (110 mL, 1.0 mmol, 1.0 equiv). The
resulting mixture was stirred at 55 °C for 12 h. The solvent was then
removed in vacuo. The crude product was purified by flash chroma-
tography on silica gel (Et2O–PE = 10:90) to give 464 mg (93%) of
2a. Mp 110 °C. 1H NMR (400 MHz, CDCl3): d = 9.12 (br s, 1 H),
7.56–7.48 (m, 4 H), 7.47–7.41 (m, 1 H), 7.39–7.32 (m, 5 H), 6.08–
5.96 (m, 1 H), 5.53 (br s, 1 H), 5.33 (d, J = 17.4 Hz, 1 H), 5.21 (dd,
J = 10.1, 1.0 Hz, 1 H), 4.59 (dd, J = 16.0, 6.3 Hz, 1 H), 4.47–4.40
(m, 1 H), 4.39–4.30 (m, 1 H), 2.23–2.30 (m, 1 H), 2.07–1.93 (m, 2
H), 1.92–1.81 (m, 1 H), 1.69–1.47 (m, 5 H), 1.41–1.26 (m, 2 H),
1.18–1.07 (m, 2 H), 0.97 (d, J = 6.7 Hz, 6 H). 13C NMR (100.6
MHz, CDCl3): d = 200.7, 149.6, 136.5, 136.3, 134.4, 131.0, 133.1,
129.4, 129.0, 128.9, 128.8, 117.7, 66.7, 53.9, 48.3, 40.1, 31.5, 31.2,
25.8, 25.3, 23.2, 23.0. IR (thin film): 3705, 3602, 3029, 2854, 2341,
1581, 1564, 1426 cm–1. HRMS: m/z calcd for C30H37N5S: 499.2770;
found: 499.2769.

Typical Procedure for the Synthesis of Imidazolinium 3b (Table 
3, entry 1)
To a solution of 189 mg (1.0 mmol, 1.0 equiv) of 5-phenyl-1,2,4-
triazine-3-thiol in toluene (1 mL) were added allylamine (75 mL, 1.0
mmol, 1.0 equiv), isovaleraldehyde (108 mL, 1.0 mmol, 1.0 equiv),
and cyclohexylisocyanide (110 mL, 1.0 mmol, 1.0 equiv). The re-
sulting mixture was stirred at 110 °C for 2 h and was then diluted to
a 0.1 M concentration. Copper triflate (362 mg, 1.0 mmol, 1.0
equiv) was added, and the resulting mixture was stirred at 110 °C
for 1 h. The solvent was removed in vacuo. The crude product was
purified by flash chromatography on silica gel (Et2O) to give 374
mg (69%) of 3b. 1H NMR (400 MHz, CDCl3): d = 9.31 (s, 1 H), 8.24
(d, J = 8.1 Hz, 2 H), 7.68–7.59 (m, 3 H), 6.13–6.04 (m, 1 H), 5.40
(d, J = 10.4 Hz, 1 H), 5.29 (d, J = 17.2 Hz, 1 H), 5.20 (d, J = 5.8 Hz,
2 H), 4.02 (d, J = 7.6 Hz, 1 H), 3.45 (br s, 1 H), 2.84 (d, J = 7.3 Hz,
2 H), 2.21–2.14 (m, 1 H), 2.01 (br s, 2 H), 1.79 (br s, 2 H), 1.65 (d,
J = 11.6 Hz, 1 H), 1.37–1.30 (m, 5 H), 1.06 (d, J = 6.6 Hz, 6 H). 13C
NMR (100.6 MHz, CDCl3): d = 153.2, 140.6, 134.9, 134.0, 132.7,
130.9, 130.7, 130.2, 128.9, 127.2, 120.2, 55.8, 46.9, 34.6, 32.8,

29.0, 25.7, 25.2, 22.9. IR (thin film): 3309, 2930, 2857, 1631, 1602,
1565, 1252, 1158 cm–1. MS: m/z calcd for C24H32N5: 390; found:
390.
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