

Communication

Enantioselective Construction of Cyclobutanes: A New and Concise Approach to the Total Synthesis of Piperarborenine B

Jiang-lin Hu, Liang-Wen Feng, Lijia Wang, Zuowei Xie, Yong Tang, and Xiaoge Li

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.6b08279 • Publication Date (Web): 08 Sep 2016

Downloaded from http://pubs.acs.org on September 8, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Enantioselective Construction of Cyclobutanes: A New and Concise Approach to the Total Synthesis of (+)-Piperarborenine B

Jiang-Lin Hu,[†] Liang-Wen Feng,[†] Lijia Wang, [†] Zuowei Xie*, [§] Yong Tang^{*,†} Xiaoge Li[†]

[†] The State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. [§] Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.

Department of Chemistry, The Chinese Oniversity of Hong Kong, Shatin, New Territories, Hong Kong, Ch

Supporting Information Placeholder

ABSTRACT: A highly diastereoselective and enantioselective Cu(II)/SaBOX catalyzed [2 + 2] cycloaddition of methylidenemalonate with multisubstituted alkenes was developed to furnish the optically active cyclobutanes in high yields with >99/1 dr and up to >99% ee. By applying the newly developed method, the total synthesis of (+)-piperarborenine B was completed in 8 steps from methylidenemalonate and olefin with 17% overall yield, >99/1 dr and 99% ee.

The occurrence of cyclobutane frameworks in many natural products and biologically active compounds (Figure 1), $\frac{1}{2}$ as well as the possibility to transform cyclobutanes bearing multiple functional groups to various synthetically useful and architecturally complex structures,² has aroused great interests to build these fascinating structures.³ Although enantioselective protocols have achieved remarkable breakthroughs,⁴⁻⁶ successful examples of asymmetric cyclobutanation are still limited due to the fact that some of these methods still suffer from limitations such as moderate diastereoselectivity and/or high catalyst loading, as well as limited substrate scope. Accordingly, the appeal of developing new and effective enantioselective methods for the construction of new-fashioned cyclobutanes is urgent and necessary. Methylidenemalonate, which was first prepared by Perkin in 1886,⁷ has been found to be a very reactive candidate in the [2 + 2] cycloaddition with electron-rich alkenes to form donor-acceptor (D-A) cyclobutanes in the presence of Lewis acid catalysts since 1983.^{2a,2b,8} Recently, Johnson et al.,^{2a} Pagenkopf et al.^{2b} and Waser et al.^{8d} independently developed racemic cyclobutanation reactions, using Sc(OTf)₃, Yb(OTf)₃, or FeCl₃·Al₂O₃ as catalysts. However, to the best of our knowledge, the enantioselective version of this reaction has not been realized yet. This can probably be ascribed to the high symmetry of the methylidenemalonate molecule, the remote chiral delivery to the prostereogenic olefin, and the resulting optically active D-A cyclobutanes being likely to decompose into the racemic zwitterions promoted by Lewis acids, which makes the enantioselective cyclobutanation reaction a challenging problem. In this work, we have developed a Cu(II)/BOX (bisoxazoline) catalyzed [2 + 2] cycloaddition of methylidenemalonate with multisubstituted alkenes, furnishing tri- and tetra- substituted cyclobutanes with

high diastereoselectivities and excellent ees. In addition, optically active (+)-piperarborenine B was synthesized by employing this newly developed method in 8 steps from methylidenemalonate and olefin with 17% overall yield, >99/1 dr and 99% ee. Herein, we report these preliminary results.

Figure 1. Bioactive natural products containing cyclobutane frameworks.

We began our study by using sidearm-modified bisoxazoline (SaBOX) ligand L1 with two pendent benzyl groups as sidearms^{9,10,11} copper perchlorate as catalyst, and 4methoxystyrene 2a as a model substrate (Table 1). When performed at room temperature or 0 °C, the reaction proceeded very fast and completed within a few minutes but without any chiral induction (entries 1, 2). Lowing the reaction temperatures resulted in a dramatic increase of the enantioselectivity. Notably, when the reaction was carried out at -70 °C, 69% ee was obtained with a significant decrease of the yield, despite a full consumption of 2a (entry 3). However, further study of this reaction has shown that this result was difficult to reproduce (entry 3). Interestingly, when **3a** with a 96% ee was subjected to the above reaction conditions, 3a was recovered after 2 h in 80% yield but with only 50% ee (Scheme 1, eq. 1). A cross experiment of 3a (96% ee) with 2m was also carried out, however, only 3a with 62% ee was observed and no cross cyclobutanation compound was detected (eq. 2). These results suggest that the cyclobutane product 3a is probably decomposed into a pair of zwitterions at room temperature in the presence of Lewis acids,^{2a} resulting in the racemization of 3a.

Table 1. Reaction Optimization^a

MeO	$_{2}C$ $CO_{2}Me$ + OMe 1 $2a$	Lewis acid (1 L (12 mc Solvent, -70' $R^2 R^3$ $O \longrightarrow C$ R^1 L	0 mol%) 0 mol%) 0 mol%) 0 mol% 0 mol% 0 mol% 0 mol% 0 mol%) 0 mol%)	P = 4-MeC	e Me DC ₆ H₄
L1: $R^{1}=iPr$, $R^{2}=R^{3}=Bn$ L2: $R^{1}=secBu$, $R^{2}=R^{3}=Bn$ L3: $R^{1}=secBu$, $R^{2}=R^{3}=Bn$ L3: $R^{1}=iPr$, $R^{2}=Me$, $R^{3}=\sqrt{10}$					
L4 : R^1 = Ph, R^2 = R^3 = Bn L5 : R^1 = Ph , R^2 = R^3 = Bn L6 : R^1 = Pr , R^2 = R^3 = $R^$					
entry	Lewis acids	solvent	L	yield $(\%)^b$	ee (%) ^c
$1^{d, f}$	Cu(ClO ₄) ₂ ·6H ₂ O	CH_2Cl_2	L1	48	0
2 ^{<i>e, f</i>}	Cu(ClO ₄) ₂ ·6H ₂ O	CH_2Cl_2	L1	91	0
3 ^{<i>f</i>, <i>g</i>}	Cu(ClO ₄) ₂ ·6H ₂ O	CH_2Cl_2	L1	19	63~69
4^f	Cu(ClO ₄) ₂ ·6H ₂ O	CH_2Cl_2	L1	28	72
5^f	Cu(OTf) ₂	CH_2Cl_2	L1	41	70
6^{f}	Ni(ClO ₄) ₂ ·6H ₂ O	CH_2Cl_2	L1	29	0
7	Cu(ClO ₄) ₂ ·6H ₂ O	CH_2Cl_2	L1	45	72
8	Cu(ClO ₄) ₂ ·6H ₂ O	THF	L1	41	93
9	Cu(ClO ₄) ₂ ·6H ₂ O	THF	L2	7	71
10	Cu(ClO ₄) ₂ ·6H ₂ O	THF	L3	7	56
11	Cu(ClO ₄) ₂ ·6H ₂ O	THF	L4	10	63
12	Cu(ClO ₄) ₂ ·6H ₂ O	THF	L5	39	92
13	Cu(ClO ₄) ₂ ·6H ₂ O	THF	L6	22	82
14	Cu(ClO ₄) ₂ ·6H ₂ O	THF	L7	48	83
15	Cu(ClO ₄) ₂ ·6H ₂ O	THF	L8	trace	-
16	Cu(ClO ₄) ₂ ·6H ₂ O	THF	L9	82	97
17	$Cu(ClO_4)_2 \cdot 6H_2O$	THF	L10	77	95
18	$Cu(ClO_4)_2 \cdot 6H_2O$	THF	L11	54	95
^a Reaction conditions: Lewis acid (0.04 mmol), L (0.048 mmol), 5					
Å MS (100 mg), 1 (1.0 mmol), and 2a (0.4 mmol) in 4.0 mL of					

Å MS (100 mg), **1** (1.0 mmol), and **2a** (0.4 mmol) in 4.0 mL of solvent, After **1** or **2a** was consumed, Et₃N was added to quench the reaction at the reaction temperature. ^{*b*}Isolated yields. ^{*c*}Determined by HPLC using a chiral stationary. ^{*d*}Reaction performed at room temperature. ^{*e*}Reaction performed at 0 °C. ^{*f*} 4 Å MS was used as additive. ^{*g*}Without Et₃N quench.

Thus, it was envisioned that poisoning the catalyst may inhibit the racemization. As expected, the ee of cyclobutane **3a** was maintained under the reaction conditions for 2 h after being quenched by NEt₃ at -70 °C (eq. 3). On the basis of these results, we improved the work-up procedure by quenching the reaction with NEt₃ at -70 °C after the reaction was completed. Under these conditions, the ee was enhanced slightly and could be readily reproduced (entry 7). Remarkably, by means of quenching the reaction at low temperature, the racemization of the resulting D-A cyclobutanes was effectively suppressed, which provides a promising solution in the enantioselective catalysis involving enantio-labile compounds. With the reproducible reaction conditions in hand, we turned our focus on further optimization of the Lewis acid, solvents

Scheme 1. Mechanistic studies

and ligands (Table 1). It was found that both Cu(OTf)₂ and $Ni(ClO_4)_2$ could afford the desired product (entries 5, 6).¹² Interestingly, the yield was promoted to 45% without any loss of the enantioselectivity, when 5 Å MS (molecule sieves) was used instead of 4 Å MS as additive, (entry 7). Notably, when THF was employed as solvent, a significant improvement of the enantiocontrol was obtained with a 93% ee, but with a still moderate yield (entry 8). We then switched to THF as solvent to study the influence of ligands.¹² As can be seen from Table 1, the substituent of the BOX (bisoxazoline) ligand has a great impact on the stereocontrol. It was found that increasing the steric demand of the R¹ group led to a dramatic decrease of both yield and enantioselectivity (entries 8-10). L4 bearing an aromatic R^1 group could not give a better enantioselectivity (entry 11). Thus, the chiral BOX ligand L1 derived from Lvalinol was found to be best in terms of both ee value and yield (41% yield, 93% ee, entry 8). When ligands L5-L7 were applied in the reaction, the sidearm effect of the ligands was clearly revealed.¹⁰ For ligands L6 and L7 without sidearm groups, a decrease of enantioselectivity was observed (entries 13-14). In addition, trisoxazoline (TOX) L8 containing a Lvalinol derived oxazolinyl group as sidearm could barely promote the reaction (entry 15). Since the sidearms of the ligands played a key role in the enantiocontrol of the cyclobutanation, we tried to modify the sidearms and synthesized ligands L9-L11 with different pendant groups R^2 and $R^{3.12}$ All these ligands showed increased ee values and yields (entries 16-18) in comparison with L1. Of the ligands tested, L9 bearing 2-BrC₆H₄CH₂ groups as sidearms gave the best result, leading to the desired product in 82% yield with 97% ee (entry 16).

Under the optimized conditions, the substrate scope was next explored (Table 2). Using methylidenemalonate 1, a broad range of alkenes worked well. For substituted styrenes 2a-2c, with electron-donating groups such as MeO- or BnO- in *para*-position of the phenyl, the corresponding D-A cyclobutanes (3a, 3b) were isolated in 82-91% yields with 96% ee, respectively. 3,4-Disubstituted piperonyl alkene 2c worked well in this reaction with the same enantioselectivity. Thienyl substituted cyclobutane 3d could also be furnished in 95% ee. The absolute configuration of 3d was confirmed by single-

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

crystal X-ray analyses.¹³ For 1,1-disubstituted alkenes **2e-2f**, the desired products were obtained with up to 72% yields and up to 96% ee, when the reaction was carried out at - 80 °C,

Table 2. Substrate Scope^a

^{*a*}Reaction conditions: Cu(ClO₄)₂·6H₂O (0.04 mmol), **L9** (0.048 mmol), 5 Å MS (100 mg), **1** (1.0 mmol), and **2** (0.4 mmol) in 4.0 mL of THF, quenched by Et₃N at -70 °C. ^{*b*}Isolated yield. ^cDetermined by HPLC using a chiral stationary. ^{*d*}Cu(OTf)₂ (0.04 mmol), **L1** (0.048 mmol) as catalyst, 2.0 mL THF as solvent, reaction at -80 °C. ^{*e*}Determined by ¹H NMR. ^{*f*}Reaction at -50 °C. ^{*g*}The absolute configuration of **30** has not been determined.

using Cu(OTf)₂ as the catalyst. Notably, a variety of *trans* disubstituted alkenes **2k-2g** proved to be suitable substrates for the current catalytic system, giving the corresponding products in good yields with excellent diastereoselectivity and enantioselectivity (93/7–>99/1 dr, 97–>99% ee). To test the functional group tolerance of the reaction, a TBS protected hydroxyl group was introduced into the substrates, affording **3l**-**3n** in 68-92% yields with >99/1 dr and 96–>99% ee. The absolute configuration of **3g** was determined by vibrational circular dichroism (VCD).¹² To our delight, the tri-substituted alkene **2o** was also compatible with this reaction, delivering cyclobutane **3o**, bearing a full-carbon chiral center in 74% yield with >99/1 dr and 93% ee. Unfortunately, 2-substituted methylidenemalonate proved to be inert under the current reaction conditions.¹²

Piperarborenine B (Figure 1), which was isolated from the stem of *Piper arborescens* in 2004, has shown *in vitro* cyto-

toxicity against cancer cell lines (P-388, HT-29, and A549, $IC_{50} < 1.46 \ \mu g/mL)^{1c,1e}$, and thus has received research interests in the area of organic synthesis.¹⁴ In 2011, Baran and coworkers applied an elegant sequential cyclobutane C-H arylation strategy in their total synthesis of racemic piperarborenine B.^{14a,15} With cyclobutane **3m** in hand, we attempted the enantioselective total synthesis of piperarborenine B (Scheme 2). By deprotection of 3m with TBAF, TBS was removed to give 4 in a quantitative yield. Swern oxidation of 4 resulted in the formation of aldehyde 5 which was further oxidized by oxone to form acid 6. Condensation of 6 with 7 by EDCI led to amide 8. With the amide directing group, the 3,4,5trimethoxylphenyl group could be installed selectively to afford 10. After removing one of the ester groups in 10 by using LiCl. a single diastereoisomer 11 was obtained. Boc protection of the amideand subsequent hydrolysis of the amide and ester group afforded a diacid which was amidated to give (+)piperarborenine B. Thus, by employing the current reaction, total synthesis of (+)-piperarborenine B could be acomplished in 8 steps from methylidenemalonate and 2m with 17% overall yield and 99% ee. During the preparation of this paper, a beautiful work on the enantioselective total synthesis of (+)piperarborenine B was reported by Fox and co-workers in 10 steps from veratraldehyde with 8% overall yield and 92% ee.14b

Scheme 2. Total Synthesis of (+)-Piperarborenine B^a

^aReagent and conditions: (a) TBAF (1.5 equiv), THF, rt, 99%; (b) DMSO (2.0 equiv), (COCl)₂ (1.3 equiv), 92%; (c) Oxone (0.9 equiv), DMF; (d) EDCI (1.2 equiv), DMAP (2.4 equiv), 7 (1.1 equiv), DCM, 79% 2 steps; (e) **9** (2.0 equiv), Pd(OAc)₂ (0.3 equiv), Ag₂CO₃ (1.5 equiv), PivOH (1.0 equiv), toluene, 130 °C, 72h, 70% b.r.s.m; (f) LiCl (10 equiv), H₂O (10 equiv), DMSO, 130 °C, 48h, 93%; (g) (Boc)₂O (1.5 equiv), DMAP (0.1 equiv), MeCN; then LiOH (6 equiv), H₂O₂ (10 equiv), THF/H₂O; (COCl)₂, DMF, THF, 2h; 12 (3 equiv), toluene, 4 Å MS, 80 °C, 12h, 69%.

In summary, the first asymmetric [2 + 2] cycloaddition of dimethyl methylidene malonate with polysubstituted olefins has been developed using Cu(II)/SaBOX as the catalyst, giving optically active cyclobutanes in high yields with >99/1 dr

and up to >99% ee. The reaction has a broad substrate scope, in which mono-, di-, and tri-substituted alkenes all work well. This newly developed method has been applied to the enantioselective total synthesis of (+)-piperarborenine B which was completed in 8 steps from methylidenemalonate and 2m with 17% overall yield and 99% ee. Further application of this reaction is an on-going project in our laboratory.

ASSOCIATED CONTENT

Experimental procedures, complete characterization data, including NMR spectra and HPLC data as well as CIF data of **3d**. This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

AUTHOR INFORMATION

Corresponding Author

tangy@mail.sioc.ac.cn; zxie@cuhk.edu.hk

ACKNOWLEDGMENT

We are grateful for the financial support from the National Natural Sciences Foundation of China (No. 21421091, 21432011, and 21272250); the National Basic Research Program of China (973 Program) (2015CB856600); the NSFC/RGC Joint Research Scheme (21461162002 to Y.T. and N_CUHK442/14 to Z.X.), and the Chinese Academy of Sciences. We also thank Dr. Sebastian Schaubach for the assistance in English editing.

REFERENCES

(1) For selected examples, see (a) Nakamura, M.; Chi, Y. M.; Yan, W. -M.; Yonezawa, A.; Nakasugi, Y.; Yoshizawa, T.; Hashimoto, F.; Kinjo, J.; Nohara, T.; Sakurada, S. *Planta Med.* **2001**, *67*, 114–117. (b) Fujiwara, Y.; Naithou, K.; Miyazaki, T.; Hashimoto, K.; Mori, K.; Yamamoto, Y. *Tetrahedron Lett.* **2001**, *42*, 2497–2499. (c) Lee, F. -P.; Chen, Y. -C.; Chen, J. -J.; Tsai, I. -L.; Chen, I. -S. *Helv. Chim. Acta* **2004**, *87*, 463–468. (d) Wei, K.; Li, W.; Koike, K.; Chen, Y.; Nikaido, T. *J. Org. Chem.* **2005**, *70*, 1164–1176. (e) Tsai, I. -L.; Lee, F. -P.; Wu, C. -C.; Duh, C. -Y.; Ishikawa, T., Chen, J. -J.; Chen, Y. -C.; Seki, H.; Chen, I. -S. *Planta Med.* **2005**, *71*, 535–542.

(2) For leading examples on the ring-opening/annulation reactions of Donor-Acceptor cyclobutanes, see (a) Parson, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 14202–14203. (b) Moustafa, M. M. A. R.; Pagenkopf, B. L. Org. Lett. 2010, 12, 4732–4735. (c) Moustafa, M. M. A. R.; Stevens, A. D.; Machin, B. P.; Pagenkopf, B. L. Org. Lett. 2010, 12, 4736–4738. (d) Stevens, A. C.; Palmer, C.; Pagenkopf, B. L. Org. Lett. 2011, 13, 1528–1531. (e) Perrotta, D.; Racine, S.; Vuilleumier, J.; de Nanteuil, F. Waser, J. Org. Lett. 2015, 17, 1030–1033. (f) Hu, J. -L.; Wang, L. J.; Xu, H.; Xie, Z. W.; Tang, Y. Org. Lett. 2015, 17, 2680–2683. (g) Reissig, H. U.; Zimmer, R., Angew. Chem., Int. Ed. 2015, 54, 5009–5011.

(3) For selected racemic examples of cyclobutanation, see (a) Paquette, L. A.; Cuniere, N. Org. Lett. 2002, 4, 1927–1929. (b) Lasa, M.; Lopez, P.; Cativiela, C. Tetrahedron: Asymmetry 2005, 16, 4022–4033. (c) Boxer, M. B.; Yamamoto, H. Org. Lett. 2005, 7, 3127–3129. (d) Inanaga, K.; Takasu, K.; Ihara, M. J. Am. Chem. Soc. 2005, 127, 3668–3669. (e) Meek, S. J.; Pradaux, F.; Demanuel, E. H.; Harrity, J.

P. A. Org. Lett. **2006**, *8*, 5597–5600. (f) Chaumontet, M.; Piccardi, R.; Audic, N.; Hitce, J.; Peglion, J. -L.; Clot, E.; Baudoin, O. J. Am. Chem. Soc. **2008**, 130, 15157–15166. (g) Adachi, M. A.; Yamauchi, E.; Komada, T.; Isobe, M. Synlett **2009**, 20, 1157–1161. (h) de Nanteuil, F.; Waser, J. Angew. Chem., Int. Ed. **2013**, 52, 9009–9013.

(4) For photo-promoted enantioselective [2 + 2] reactions, see (a) Guo. H.; Herdtweck. H.; Bach, T. *Angew. Chem., Int. Ed.* **2010**, *49*, 7782–7785. (b) Muller, C.; Bauer, A.; Maturi, M. M.; Cuquerella, M. C.; Miranda, M. A.; Bach, T. J. Am. Chem. Soc. **2011**, *133*, 16689–16697. (c) Du, J. N.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P.; Science **2014**, *344*, 392–396. (d) Conner, M. L.; Xu, Y.; Brown, M. K. J. Am. Chem. Soc. **2015**, *137*, 3482–3485.

(5) For organocatalytic enantioselective [2 + 2] reactions, see (a) Albrecht, Ł.; Dickmeiss, G.; Acosta, F. C.; Escrich, C. R.; Davis, R. L.; Jørgensen, K. A. J. Am. Chem. Soc. **2012**, *134*, 2543–2546. (b) Talavera, G.; Reyes, E.; Vicario, J. L.; Carrillo, L. Angew. Chem., Int. Ed. **2012**, *51*, 4104–4107.

(6) (a) Hayashi, Y.; Narasaka, K. Chem. Lett. 1989, 793–796. (b)
Hayashi, Y.; Niihata, S.; Narasaka, K. Chem. Lett. 1990, 2091–2094.
(c) Narasaka, K.; Hayashi, Y.; Shimadzu, H.; Niihata, S. J. Am. Chem. Soc. 1992, 114, 8869–8885. (d) Narasaka, K.; Hayashi, K.; Hayashi, Y. Tetrahedron 1994, 50, 4529–4542. (e) Canales, E.; Corey, E. J. J. Am. Chem. Soc. 2007, 129, 12686–12687. (f) Xu, Y.; Conner, M. L.; Brown, M. K. Angew. Chem. Int. Ed., 2015, 54, 11918–11928. (g)
Guisán-Ceinos, M.; Parra, A.; Martín-Heras, V.; Tortosa, M., Angew. Chem. Int. Ed., 2016, 55, 6969-6972.

(7) (a) Perkin, W. H. *Ber. Dtsch. Chem. Ges.* 1886, *19*, 1053–1057;
(b) De Keyser, J. -L.; De Cock, C. J. C.; Poupaert, J. H.; Dumont, P. *J. Org. Chem.* 1988, *53*, 4859–4862.

(8) (a) Komiya, Z.; Nishida, S., J. Org. Chem. **1983**, 48, 1500– 1509. (b) Baar, M. R.; Ballesteros, P.; Roberts, B. W., *Tetrahedron Lett.* **1986**, 27, 2083–2086. (c) Yamazaki, S.; Tanaka, M.; Inoue, T.; Morimoto, N.; Kumagai, H.; Yamamoto, K., J. Org. Chem. **1995**, 60, 6546–6551. (d) De-Nanteuil, F.; Waser, J., *Angew. Chem. Int. Ed.* **2013**, 52, 9009–9013.

(9) Deng, C.; Wang, L.-J.; Zhu, J.; Tang, Y. Angew. Chem., Int. Ed. 2012, 51, 11620–11623.

(10) For reviews on sidearm strategy, see: (a) Zhou, J.; Tang, Y. *Chem. Soc. Rev.* **2005**, *34*, 664–676. (b) Gade, L. H.; Bellemin-Laponnaz, S. *Chem. -Eur. J.* **2008**, *14*, 4142–4152. (c) Hargaden, G. C.; Guiry, P. *Chem. Rev.* **2009**, *109*, 2505–2550. (d) Liao, S.; Sun, X. L.; Tang, Y. *Acc. Chem. Res.* **2014**, *47*, 2260–2272.

(11) For recent uses of sidearm modified BOX (SaBOX) Ligand, see: (a) Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. J. Am. Chem. Soc. **2013**, 135, 7851-7854. (b) Liu, Q. J.; Yan, W. -G.; Wang, L. J.; Zhang, X. P.; Tang, Y. Org. Lett. **2015**, 17, 4014–4017. (c) Wang, M.; Liu, Z. -L.; Zhang, X.; Tian, P. -P.; Xu, Y. -H.; Loh, T. -P. J. Am. Chem. Soc. **2015**, 137, 14830–14833. (d) Feng, L.-W.; Wang, P.; Wang, L.; Tang, Y. Sci. Bull. **2015**, 60, 210-215. (e) Qiao, J. -B.; Zhao, Y. -M.; Gu, P. M. Org. Lett. **2016**, 18, 1984–1987.

(12) For details, see the Supporting Information.

(13) The crystallographic data of 3d can be found in Supporting Information.

(14) (a) Gutekunst, W. R.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 19076-19079. (b) Panish, R. A.; Chintala, S. R.; Fox, J. M. Angew. Chem., Int. Ed. 2016, 55, 4983–4987.

(15) For C-H activation in cyclobutane synthesis, see: (a) Gutekunst, W. R.; Baran, P. S. *J. Org. Chem.* **2014**, *79*, 2430-2452. (b) Chapman, L. M.; Beck, J. C.; Wu, L. Reisman. S. E. *J. Am. Chem. Soc.* **2016** *138*, 9803-9806.

1

Journal of the American Chemical Society

5