

Synthesis of 4-Aryl-1*H*-1,2,3-triazoles through TBAF-Catalyzed [3+2]Cycloaddition of 2-Aryl-1-nitroethenes with TMSN₃ under Solvent-Free Conditions

David Amantini, Francesco Fringuelli,* Oriana Piermatti, Ferdinando Pizzo, Ennio Zunino, and Luigi Vaccaro*

CEMIN. Centro di Eccellenza Materiali Innovativi Nanostrutturati, Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto 8, I-06123 Perugia, Italy

frifra@unipg.it; luigi@unipg.it

Received April 18, 2005

R = various substituents, X = CN, CO₂Et

TBAF-catalyzed [3 + 2] cycloaddition reactions of 2-aryl-1cyano- or 2-aryl-1-carbethoxy-1-nitroethenes 1 with TMSN₃ under SFC allow the corresponding 4-aryl-5-cyano- or 4-aryl-5-carbethoxy-1*H*-1,2,3-triazoles **2** to be prepared under mild reaction conditions and with good to excellent yields (70-90%). The proposed protocol does not require dried glassware or inert atmosphere.

1*H*-1,2,3-Triazoles are heterocycles with a wide range of applications that are receiving a growing attention.¹ They are commercially employed as anticorrosive agents,² agrochemicals,³ photostabilizer photographic materials,⁴ and dyes.4 In addition, they constitute the essential moiety of a number of drugs,5 and they are also potent HIV-1 inhibitors,6 anti-microbial agents,7 as well as selective β_3 -adrenergic receptor agonists.⁸ They can also act as antiviral and anticonvulsant agents.9

1,2,3-Triazole synthesis has been intensively studied, and 1,2,3-triazoles are commonly prepared by the Huis-

(1) (a) Dehne, H. In Methodenischen Chemie (Houben-Weyl); Shumann, E., Ed.; Thieme: Stuttgart, 1994; Vol/ E 8d, 305-405 and 406-478. (b) Tomé, A. C. Sci. Synth. 2004, 13, 415-601.

(2) Morgan, N. H. (CHOMERICS, Inc.) Eur. Pat. Appl. EP 437979 A2 19910724, 1991.

(3) Fan, W. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, U.K., 1996; Vol. 4, pp 1–126. (4) Willis, R. J.; Marlow, I. D. Eur. Pat Appl. 400842, 1990; Chem.

Abstr. 1991, 114, 164247b.

(5) (a) Cai, D.; Journet, M.; Larsen, R. D. US Patent US 6051707,

(6) (a) Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; De Clercq, E.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. J. Med. Chem. 1994, 37, 4185-4194. (b) Velaquez, S.; Alvarez, R.; Perez, C.; Gago, F.; De Clercq, E.; Balzarini, J.; Camarasa, M.-J. Antivir. Chem. Chemother. 1998, 9, 481-489.

(7) Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953-970.

gen 1,3-dipolar cycloaddition of azides with alkynes. The efficiency of this process is generally related to the presence of an electron-withdrawing group on the alkyne¹⁰ and/or on the azide. 11,12 Recently, significant progress in the synthesis of these heterocycles has been achieved by Sharpless et al., who have defined a Click chemistry process in which a Cu(I)-acetylenic organometallic compound prepared in situ has been used as a 1,3-dipolarophile either in aqueous medium¹³ or in organic solvent.¹⁴

Recently, Sharpless et al. have also reported the use of an alkylmagnesium bromide as 1,3-dipolarophile in dry THF for the synthesis of 1,5-disubstituted 1,2,3-triazoles under "Click conditions" 15 and demonstrated that acetylcholinesterase is an efficient catalyst for the reactions of azides with acetylenic compounds. 16

Alternative synthetic routes for the preparation of 1,2,3-triazole moiety have been rarely pursued.¹⁷ In particular, a very little attention has been devoted to [3+2] cycloaddition reactions of azides with electron-poor olefins and subsequent elimination reaction¹⁸ (Scheme 1).

The scarce application of these substrates is probably due to the poor reactivity of the reactants, which require harsh reaction conditions generally leading to unsatisfac-

(8) Brockunier, L. L.; Parmee, E. R.; Ok, H. O.; Candelore, M. R.; Cascieri, M. A.; Colwell, L. F.; Deng, L.; Feeney, W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Tota, L.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 2111–2114.

(9) Palhagen, S.; Canger, R.; Henriksen, O.; van Parrys, J. A.; Riviere, M. F.; Korscheld, M. A. Fricken, Phys. **2001**, 42, 115, 124

(9) Palhagen, S.; Canger, R.; Henriksen, O.; van Parys, J. A.; Riviere, M. E.; Karolchyk, M. A. Epilepsy Res. 2001, 43, 115-124.
(10) (a) Sheehan, J. C.; Robinson, C. A. J. Am. Chem. Soc. 1951, 73, 1207-1210. (b) Wiley, R. H.; Hussung, K. F.; Moffat, J. J. Org. Chem. 1956, 21, 190-192. (c) Kirmse, W.; Horner, L. Liebigs Ann. Chem. 1958, 614, 1-3. (d) Tanaka, Y.; Velen, S. R.; Miller, S. I. Tetrahedron 1973, 29, 3271-3283. (e) De Pasquale, R. J.; Padgett, C. D.; Pager, P. W. L. Org. Chem. 1975, 40, 210, 211, (f) Alv. Carlos. D.; Rosser, R. W. J. Org. Chem. 1975, 40, 810–811. (f) Abu-Orabi, S. T.; Atfah, M. A.; Jibril, I.; Mari'i, F. M.; Fakhri, M.; Ali, A. A. J. Heterocycl. Chem. 1989, 26, 1461-1468. (f) Journet, M.; Cai, D.; Kowal, J. J.; Larsen, R. D. Tetrahedron Lett. 2001, 42, 9117-9118. (g) Katritzky, A.; Singh, S. K. J. Org. Chem. 2002, 67, 9077-9079. (h) Garanti, L.; Molteni, G. Tetrahedron Lett. 2003, 44, 1133-1135. (i) Haryu, K.; Vahermo, M.; Mutikainen, I.; Yli-Kauhauloma, J. J. Comb. Chem. 2003, 5, 826–833. (j) Helms, B.; Mynar, J.; Hawker, C. J.;
Fréchet, J. M. J. Am. Chem. Soc. 2004, 126, 15020–15021.
(11) (a) Huisgen, R.; Knorr, R.; Moius, L.; Szeimies, G. Chem. Ber.

1965, 98, 4014–4021. (b) Huisgen, R.; Blaschke, H. Chem. Ber. 1965, 98, 2985–2997. (c) Woerner, F. P.; Reimlinger, H. Chem. Ber. 1970, 103, 1908-1917.

(12) (a) Gold, v. H. Liebigs Ann. Chem. 1965, 688, 205-216. (b)

(12) (a) Gold, V. H. Liebigs Ald. Chem. 1806, 666, 266 215. (b) Winter, W.; Müller, E. Chem. Ber. 1974, 107, 715–716. (13) (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3037–3064. (b) Rostovstev, V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599. (c) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2007. 2853–2855. (d) Feldman, A. K.; Colasson, B.; Fokin, V. V. Org. Lett. **2004**, 6, 3897–3899. (e) Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E. *Org. Lett.* **2004**, *6*, 4223–4225. (f) Sivakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.; Wang, Q. Org. Lett. 2004, 6, 4603–4606. (g) Himo, F.; Lovell, T.; Hilgraf, R.; Rosostev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. **2005**, 127, 210-216.

(14) Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. **2003**, 125, 7786–7787.

(15) Krasinki, A.; Fokin, V. V.; Sharpless, K. B. Org. Lett. 2004, 6,

(16) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radié, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. **2002**, *41*, 1053–1057.

(17) (a) Dong, Z.; Hellmund, K. A.; Pyne, S. G. Aust. J. Chem. **1993**, 46, 1431–1436. (b) Batanero, D. B.; Barba, F. Heterocycles **2004**, 65, 1175–1180. (c) Raghavendra, M. S.; Lam, Y. Tetrahedron Lett. **2004**, 45, 6129-6132.

SCHEME 1. [3+2] Cycloaddition/Elimination Strategy for the Synthesis of 1H-1,2,3-Triazoles from Electron-Poor Olefins

tory yields. To the best of our knowledge, an efficient catalyst for this process is still unavailable.

Considering that electron-poor olefins are widely accessible and despite current knowledge, we believe that this alternative approach to 1,2,3-triazoles has not showed its potential yet.

Our research is mainly focused on the definition of new, chemically efficient, easy-to-operate, and environmentally responsible synthetic procedures for the preparation of target molecules. ^{19,20} To reach this goal, we have been performing reactions in water ¹⁹ or under solvent-free conditions (SFC), ¹⁹ searching for new catalysts that would express their best efficiency in these alternative reaction media. ^{19,20}

Recently, we have reported an environmentally friendly protocol for the preparation of 1H-tetrazoles by a tetrabutylammonium fluoride (TBAF)-catalyzed cycloaddition of aryl- or alkylnitriles with trimethylsilyl azide (TMSN $_3$) under SFC. ¹⁹ Starting from these results and considering that we have been investigating the synthetic utility of α -cyano- and α -carbetoxy- α -nitroethenes 1, ^{19b,c,h,20b} we have planned to use TBAF as a catalyst in the [3 + 2] cycloadditions of these electron-poor olefins with TMSN $_3$ under SFC (Scheme 2). Acceptors 1 can open a straightforward and environmentally friendly access route to a new class of triazoles such 2.

To our knowledge, α -nitroethenes have never been used as acceptors in the reaction with an azide except for the preparation of 1*H*-1,2,3-triazoles **2** (X = H, R = H, *p*-Cl, *p*-Br) via reaction of the corresponding β -nitrostyrene **1** (X = R = H) with sodium azide in DMF. ^{18c} In these cases, yields were poor.

Initially, we have optimized the reaction conditions by studying the cycloaddition reaction of (E)-2-phenyl-1-

SCHEME 2. Synthesis of 4-Aryl-Substituted 1*H*-1,2,3-Triazoles 2 Starting from Nitroethenes 1

R = Various substituents X = CN, CO₂Et

TABLE 1. Optimization of the Reaction of (E)-2-Phenyl-1-cyano-1-nitroethene (1a) with TMSN $_3^a$ at 30 °C

$$NO_2$$
 + TMSN₃ $N=N$

Ia			Za		
entry	${ m catalyst}^b$	medium	time (h)	conversion ^c (%)	
1		SFC	24		
2	$TiCl_4$	SFC	24		
3	$TiCl_4$	DCE	24		
4	TiCl ₄ ·2THF	SFC	24		
5	TiCl ₄ ·2THF	DCE	24		
6	TBABr	SFC	15	98	
7	$TBAF \cdot 3H_2O$	SFC	3	99	
8	$TBAF \cdot 3H_2O$	THF	10	99	
9	$TBAF \cdot 3H_2O$	DCE	11	91	

 a 2.0 equiv. b 0.1 equiv. c Reaction conversions determined by $^1\mathrm{H}$ NMR analyses.

cyano-1-nitroethene (1a) with $TMSN_3$ at 30 °C. The results are illustrated in Table 1.

Under SFC and in the absence of any additive, nitroethene ${\bf 1a}$ did not react with TMSN $_3$ (2.0 equiv) even after 24 h (Table 1, entry 1). Similarly, TiCl $_4$, chosen as a representative and commonly used Lewis acid catalyst in many organic processes, and its THF complex TiCl $_4$ · 2THF were not able to promote the cycloaddition of ${\bf 1a}$ with TMSN $_3$ both under SFC and in dichloroethane (DCE) (Table 1, entries 2–5).

By using 0.1 equiv of tetrabutylammonium bromide (TBABr) as catalyst under SFC at 30 °C, triazole $\bf 2a$ was obtained as the sole reaction product after 15 h (Table 1, entry 6). Under these reaction conditions HNO₂-elimination and tautomeric rearrangement always followed the cycloaddition process.

A better result was achieved by using 0.1 equiv of TBAF. In the presence of this salt, the reaction of 1a with TMSN₃ was complete in only 3 h at 30 °C (Table 1, entry 7). By using THF or DCE as reaction medium longer times (10 and 11 h, respectively) were observed (Table 1, entries 8 and 9). The excellent catalytic activity of TBAF under SFC was then used for the preparation of a variety of triazoles (2a-g). The results are illustrated in Table 2.

In the presence of 0.1 equiv of TBAF, nitroethenes ${\bf 1a-e}$ reacted at 30 °C with TMSN₃ (2.0 equiv) under SFC and in very short times and gave triazoles ${\bf 2a-e}$ in excellent yields (75–90%) (Table 2, entries 1–5), independently from the substituent at the phenyl ring. When 2-thienyl or 2-furfuryl was the aryl substituent (1f, 1g), reaction rates and isolated yields of the corresponding 2f and 2g were still satisfactory (Table 2, entries 6 and 7).

^{(18) (}a) Maiorana, S.; Pocar, D.; Dalla Croce, P. Tetrahedron Lett. **1966**, 7, 6043–6045. (b) Meek, J. S.; Fowler, J. J. Org. Chem. **1968**, 33, 985–991. (c) Zefirov, M. S.; Chapovskaya, N. K.; Kolesnikov, V. V. Chem. Commun. **1971**, 1001–1002. (d) Beck, G.; Günther, D. Chem. Ber. **1973**, 2758–2766. (e) Shin, C. G.; Yonezawa, Y.; Yoshimura, J. Tetrahedron Lett. **1974**, 15, 7–10. (f) Chakrasali, R. T.; Ila, H.; Junjappa, H. Synthesis **1988**, 453–455. (g) Chakrasali, R. T.; Ila, H.; Junjappa, H. Synthesis **1988**, 851–854.

⁽¹⁹⁾ As representative papers, see: (a) Fringuelli, F.; Pizzo, F.; Vaccaro, L. Synthesis 2000, 646–650. (b) Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Green Chem. 2001, 3, 229–232. (c) Fringuelli, F.; Matteucci, M.; Piermatti, O.; Pizzo, F.; Burla, M. C. J. Org. Chem. 2001, 66, 4661–4666. (d) Fringuelli, F.; Pizzo, F. Tortoioli, S.; Vaccaro, L. Adv. Synth. Catal. 2002, 344, 379–384. (e) Fioroni, G.; Fringuelli, F.; Pizzo, F.; Vaccaro, L. Green Chem. 2003, 5, 425–428. (f) Fringuelli, F.; Pizzo, F.; Rucci, M.; Vaccaro, L. J. Org. Chem. 2003, 68, 7041–7045. (g) Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. J. Org. Chem. 2003, 68, 8248–8251. (h) Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 2003, 68, 9263–9268. (i) Fringuelli, F.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 2004, 69, 2315–2321.

^{(20) (}a) Amantini, D.; Fringuelli, F.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 2001, 66, 6734–6737. (b) Amantini, D.; Fringuelli, F.; Pizzo, F. J. Org. Chem. 2002, 67, 7238–7243. (c) Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. Tetrahedron Lett 2003, 44, 6785–6787. (d) Amantini, D.; Beleggia, R.; Fringuelli, F.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 2004, 69, 2896–2898. (e) Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. J. Org. Chem. 2004, 69, 7745–7747. (f) Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. J. Org. Chem. 2004, 69, 8780–8785.

TABLE 2. Synthesis of 4-Aryl-5-cyano-1H-1,2,3-triazoles 2a-g under SFC at 30 $^{\circ}$ C^a

Entry	Substrate	Time (h)	Triazoles	Yield (%) ^b
1	NO ₂ CN	3	N=N NH CN	85
2	CI CN NO2	0.15	CI N=N NH CN 2b	90
3	MeO 1c NO2	3	MeO 2c	75
4	HO CN 1d	3	HN-N N CN	70
5	NO ₂ CN	1	N=N, NH CN	85
6	NO ₂ S CN	2	N=N NH NH S CN	75
7	NO ₂ CN	3	N=N NH CN	75

 a 0.1 equiv of TBAF+3H2O and 2.0 equiv of TMSN3. b Yield of isolated product.

The use of TBAF under SFC was then extended to the reactions of 2-aryl-1-carbethoxy-1-nitroethenes 1h-p with TMSN $_3$ (Table 3). These 1,3-dipolarophiles although less reactive than benzylydenes 1a-g, reacted with TMSN $_3$ (4.0 equiv) in the presence of 0.1 equiv of TBAF, under acceptable mild conditions (50–80 °C). Also in this case the nature of the substituent and its position in the aromatic ring little influenced the reactivity of the substrate. In all cases, [3+2] cycloadditions were complete in a reasonable time (4–12 h) and triazoles 2h-p were isolated in good yields (70–85%).

All the reactions were performed by mixing under vigorous stirring the heterogeneous mixture of a benzylydene $\mathbf{1}^{21}$ with $TMSN_3$ (2.0 or 4.0 equiv) in the presence of 0.1 equiv of TBAF, 22 at the temperature and for the time reported in Tables 2 and 3. The reaction of $\mathbf{1a}$ was also performed on a 100 mmol scale without encountering any additional problems, and triazole $\mathbf{2a}$ was isolated in 87% yield. Triazoles $\mathbf{2}$ have been isolated in pure form after silica gel column chromatography of the crude reaction mixtures. All the prepared triazoles have been

TABLE 3. Synthesis of 4-Aryl-5-carbethoxy-1*H*-1,2,3-triazoles 2h-p under SFC^a

	Substrate ²¹	T (°C)	Time (h)	les 2h-p under s Triazoles	Yield (%) ^b
1	NO ₂ CO ₂ Et	50	7	N=N NH CO ₂ Et	80
2 _{cı} -	NO ₂ CO ₂ Et	50	4	N=N NH CO ₂ Et	85
3	NO ₂ CO ₂ Et	50	7	O_2N $N=N$ NH CO_2Et	85
4 _{F3} C	NO ₂ CO ₂ Et	50	5	N=N NH CO ₂ Et	75
5 _{NC}	NO ₂ CO ₂ Et	50	6	N=N NH CO ₂ Et	70
6 _{Me}	NO ₂ CO ₂ Et	80	8	MeO 2m N=N, NH CO ₂ Et	70
7	NO ₂ CO ₂ Et	80	8	MeO N≈N, NH CO ₂ Et	75
MeC	NO ₂ CO ₂ Et	80	9	MeO N=N NH CO ₂ Et	70
9 Me0	MeO NO ₂ CO ₂ Et	80	12	MeO N=N NH CO ₂ Et	70

 a 4 equiv of TMSN $_3$ and 0.1 equiv of TBAF. b Yield of isolated product.

fully characterized, and the corresponding charts, except for **2h** whose spectroscopic data have already been reported, ¹⁰ⁱ are included in Supporting Information.

In conclusion, TBAF is the first organic catalyst able to efficiently catalyze the cycloaddtion reaction of an electron-poor olefin with TMSN₃ making this approach to 1*H*-1,2,3-triazoles a valid and viable alternative to classic Huisgen 1,3-dipolar cycloaddition of azides with alkynes. Following an easy procedure that does not require dried glassware and inert atmposphere, a wide variety of 4-aryl-1*H*-1,2,3-triazoles **2** have been prepared under mild and environmentally friendly conditions.

Experimental Section

Representative Experimental Procedure. General experimental details can be found in the Supporting Information. *CAUTION*: Azides can be very explosive compounds and should be handled with great care. During our study, we used TMSN₃

⁽²¹⁾ Z)- α -Cyanonitroethenes ${\bf 1a-g}$ were prepared as the pure (Z) stereoisomer by the reported procedure. ^{19b} In the case of α -carbethoxynitroethenes ${\bf 1h-p}$ by following the reported procedure, E/Z mixtures were sometimes obtained and used. ²²

⁽²²⁾ Lehnert, W. Tetrahedron 1972, 28, 663-666.

and we encountered no problems.23 In a screw-capped vial equipped with a magnetic stirrer, TBAF·3H₂O (0.064 g, 0.2 mmol), (E)-1-cyano-2-pheny-l-nitroethene (1a) (0. 348 g, 2.0 mmol), and TMSN₃ (0.460 g, 4.0 mmol) were consecutively added, and the resulting mixture was left under vigorous stirring at 30 °C for 3 h. The crude reaction mixture was charged on a silica gel column chromatography (petroleum ether/ethyl acetate 8/2 (gradient); silica/sample 15:1). Pure 4-phenyl-1H-1,2,3triazole-5-carbonitrile (2a) was isolated as a white solid in 85% yield (0.289 g). The product was recrystallizated from ethyl acetate: white crystals; mp = 185-186 °C; $R_f = 0.20$ (Etp/AcOEt/ AcOH/80/17/3); IR (KBr, cm⁻¹): 687 (s), 775 (s), 687 (s), 775 (s), 1273 (s), 1497 (m), 2241 (m), 2809 (m), 2845 (m), 2906 (m), 3076

(m), 3104 (m); ¹H NMR (400 MHz, CD₃OD) δ : 7.40-7.70 (m, 2H, 7.90-7.96 (m, 2H); ¹³C NMR ((400 MHz, CD₃OD) δ: 114.0, 117.9, 127.0, 127.7, 130.3, 132.2, 148.4. Anal. Calcd for C₉H₆N₄: C, 52.55; H, 5.14; N, 30.64. Found: C, 52.59; H, 5.32; N, 30.80.

Acknowledgment. The Ministero dell'Istruzione dell'Università e della Ricerca (MIUR) and the Università degli studi di Perugia (within the funding projects: COFIN, COFINLAB (CEMIN), and FIRB 2001) are thanked for financial support.

Supporting Information Available: Detailed experimental procedures and spectral data for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0507845

⁽²³⁾ For a discussion on the hazards associated with azides, see: Prudent Practice for Handling Hazardous Chemicals in Laboratories; National Academic Press: Washington, DC, 1983; pp 87–88. For human toxicity, see: The Merck Index, 12th ed.; Merck & Co.: Rahway, NJ, 1996; pp 4818 and 8726.