Palladium-Catalyzed Heteroannulation of [60]Fullerene with Anilides via C–H Bond Activation

ORGANIC LETTERS 2009 Vol. 11, No. 19 4334–4337

Bo Zhu[†] and Guan-Wu Wang^{*,†,‡}

Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 73000, P. R. China

gwang@ustc.edu.cn

Received July 22, 2009

ABSTRACT

The palladium-catalyzed reaction of [60]fullerene with a variety of readily available anilides, initiated by C-H bond activation and followed by cyclization, afforded [60]fulleroindolines in a highly regioselective manner. A plausible reaction mechanism was proposed.

Fullerene chemistry has been extensively explored since the 1990s. Among the vast number of reactions discovered to functionalize fullerenes,¹ transition metal salt-mediated reactions of fullerenes are much less investigated.^{2–11} Moreover, only a few of them utilized palladium complexes, in which a (sub)stoichiometric amount of palladium source was often needed.^{3a–c} Recently, Itami's group reported the Pd-catalyzed allylation and arylation of organo(hydro)fullerenes.^{3e} More recently, we

achieved the first synthesis of [60]fulleroindolines through Pdcatalyzed heteroannulation of C_{60} with *o*-iodoanilines.^{3f} However, halide byproducts were produced, and quite a number of *o*-iodoanilines as starting materials are expensive or difficult to be prepared, thus limiting further application of this reaction. Obviously, developing a more economic and efficient method for the synthesis of fulleroindolines is highly desirable.

(3) Pd: (a) Shiu, L.-L.; Lin, T.-I.; Peng, S.-M.; Her, G.-R.; Ju, D.-D.;
Lin, S.-K.; Hwang, J.-H.; Mon, C.-Y.; Luh, T.-Y. J. Chem. Soc., Chem. Commun. 1994, 647. (b) Shen, C. K. F.; Chien, K.-M.; Liu, T.-Y.; Lin, T.-I.; Her, G.-R.; Luh, T.-Y. Tetrahedron Lett. 1995, 36, 5383. (c) Inoue, H.; Yamaguchi, H.; Suzuki, T.; Akasaka, T.; Murata, S. Synlett 2000, 1178. (d) Mori, S.; Nambo, M.; Chi, L.-C.; Bouffard, J.; Itami, K. Org. Lett. 2008, 10, 4609. (e) Nambo, M.; Itami, K. Chem.-Eur. J. 2009, 15, 4760. (f) Zhu, B.; Wang, G.-W. J. Org. Chem. 2009, 74, 4426.

(4) Re: Murray, R. W.; Iyanar, K. Tetrahedron Lett. 1997, 38, 335.

(5) Ni: Hsiao, T.-Y.; Santhosh, K. C.; Liou, K.-F.; Cheng, C.-H. J. Am. Chem. Soc. 1998, 120, 12232.

[†] University of Science and Technology of China.

[‡] Lanzhou University.

For selected reviews, see: (a) Hirsch, A. Synthesis 1995, 895. (b)
 Yurovskaya, M. A.; Trushkov, I. V. Russ. Chem. Bull. Int. Ed. 2002, 51, 367. (c) Thilgen, C.; Diederich, F. Chem. Rev. 2006, 106, 5049. For recent representative works, see: (d) Martin, N.; Altable, M.; Filippone, S.; Martin-Domenech, A.; Guell, M.; Sola, M. Angew. Chem., Int. Ed. 2006, 45, 1439. (e) Zhang, G.; Huang, S.; Xiao, Z.; Chen, Q.; Gan, L.; Wang, Z. J. Am. Chem. Soc. 2008, 130, 12614. (f) Matsuo, Y.; Iwashita, A.; Abe, Y.; Li, C.-Z.; Matsuo, K.; Hashiguchi, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 15429. (g) Murata, M.; Maeda, S.; Morinaka, Y.; Murata, Y.; Komatsu, K. J. Am. Chem. Soc. 2008, 130, 15800. (h) Nakahodo, T.; Okada, M.; Morita, H.; Yoshimura, T.; Ishitsuka, M. O.; Tsuchiya, T.; Maeda, Y.; Fujihara, H.; Akasaka, T.; Gao, X.; Nagase, S. Angew. Chem., Int. Ed. 2008, 47, 1298. (i) Clavaguera, S.; Khan, S. I.; Rubin, Y. Org. Lett. 2009, 11, 1389. (j) Wang, G.-W.; Zhu, B. Chem. Commun. 2009, 1769. (k) Wang, G.-W.; Lu, Y.-M.; Chen, Z.-X. Org. Lett. 2009, 11, 1507.

⁽²⁾ Rh: (a) Becker, L.; Evans, T. P.; Bada, J. L. J. Org. Chem. 1993, 58, 7630. (b) Gonzalez, R.; Knight, B. W.; Wudl, F. J. Org. Chem. 1994, 59, 7949. (c) Pellicciari, R.; Annibali, D.; Costantino, G.; Marinozzi, M.; Natalini, B. Synlett 1997, 1196. (d) Duczek, W.; Radeck, W.; Niclas, H.-J.; Ramm, M.; Costisella, B. Tetrahedron Lett. 1997, 38, 6651. (e) Nair, V.; Sethumadhavan, D.; Sheela, K. C.; Eigendorf, G. K. Tetrahedron Lett. 1999, 40, 5087. (f) Muraoka, T.; Asaji, H.; Yamamoto, Y.; Matsuda, I.; Itoh, K. Chem. Commun. 2000, 199. (g) Nair, V.; Sethumadhavan, D.; Sheela, K. C.; Nair, S. M.; Eigendorf, G. K. Tetrahedron 2002, 58, 3009. (h) Nambo, M.; Noyori, R.; Itami, K. J. Am. Chem. Soc. 2007, 129, 8080.

On the other hand, the C-H functionalization approach in organic synthesis has attracted great attention because of its economic and environmentally benign features.¹² Through the ortho C-H bond activation, selective oxidative couplings of anilides with alkyl halides,^{13a} olefins,^{13b-d} haloolefins,^{13e} trialkoxyarylsilanes, ^{13f} arylboronic acids, ^{13g} aryl iodides, ^{13h} and simple arenes¹³ⁱ to construct C–C bonds have been reported. The C–N,^{14a} C–X (X = Cl, Br),^{14b} and C–O^{14c} bond formations of anilides have also been demonstrated. However, to the best of our knowledge, the C-H bond activation strategy has not been applied to fullerene chemistry. We surmised that the reaction of C₆₀ with readily available anilides, through C-C coupling initiated by C-H bond activation and then C-N coupling to furnish the cyclization, could be an alternative and more practical pathway for the synthesis of fulleroindolines, as shown in Scheme 1.

Scheme 1. Design of the Alternative Pathway for the Synthesis of [60]Fulleroindolines

During the course of our work, a new Pd(II)-catalyzed 1,2-carboamination of electron-deficient dienes with *N*-aryl ureas, initiated by a urea-directed C–H bond activation, was reported.¹⁵ *p*-Toluenesulfonic acid (PTSA) proves to have a large beneficial effect in the Pd-catalyzed C–H activation^{13c,d,15,16} and thus was utilized in our investigation. Commercially available acetanilide **1a** was first chosen as the model substrate. At the onset, when a mixture of C₆₀

(0.05 mmol) and acetanilide **1a** (5 equiv) was treated with $Pd(OAc)_2$ (50 mol %) and PTSA (1 equiv) in chlorobenzene (8 mL) at 130 °C for 30 min, much to our delight, 35% of the desired product **2a** was obtained along with 60% of recovered C₆₀ (Scheme 2).

Scheme 2. Initial Result for the Synthesis of Product 2a

The initial success encouraged us to focus on developing this reaction into a catalytic process. The loading of $Pd(OAc)_2$ was reduced to 10 mol %, and various reaction conditions including oxidants, acids, and solvent systems were screened. Due to the usage of catalytic amount of $Pd(OAc)_2$, an oxidant should be required to fulfill the catalytic cycle for the reaction of C_{60} and anilide **1a**. Therefore, the effect of oxidants on the reaction was first explored. The commonly used oxidants including $Cu(OAc)_2$, ^{14a,b} *p*-benzoquinone (BQ), ^{13c,d,16} Oxone, ¹⁷ and $K_2S_2O_8^{-14c,17a}$ for the Pd-catalyzed C–H activations of arenes were examined. Copper salt $Cu(OAc)_2$ ·H₂O was found to afford product **2a**, yet in only 9% yield (Table 1, entry 1). *p*-Benzoquinone and Oxone gave the desired

Table 1. Screening of the Reaction Conditions^a

entry	acid	oxidant	solvent (mL)	yield $(\%)^b$
1	PTSA	Cu(OAc)2·H2O	PhCl (10)/CH ₃ CN (0.5)	9 (82)
2	PTSA	BQ	PhCl (10)/CH ₃ CN (0.5)	23(88)
3	PTSA	Oxone	PhCl (10)/CH ₃ CN (0.5)	22(88)
4	PTSA	$K_2S_2O_8$	PhCl (10)/CH ₃ CN (0.5)	28(85)
5	none	$K_2S_2O_8$	PhCl (10)/CH ₃ CN (0.5)	trace
6	CSA	$K_2S_2O_8$	PhCl (10)/CH ₃ CN (0.5)	15(88)
7	PWA	$K_2S_2O_8$	PhCl (10)/CH ₃ CN (0.5)	$<\!\!5\%$
8	PTSA	$K_2S_2O_8$	PhCl (10)/THF (0.5)	6 (86)
9	PTSA	$K_2S_2O_8$	PhCl (10)/DMF (0.5)	16 (70)
10	PTSA	$K_2S_2O_8$	ODCB (4)/CH ₃ CN (0.5)	39 (83)

^{*a*} All the reactions were performed with 0.050 mmol of C₆₀, 0.25 mmol of **1a**, 0.050 mmol of acid, 0.25 mmol of oxidant, and 0.0050 mmol of Pd(OAc)₂ in the indicated solvent at 130 °C for 24 h. ^{*b*} Isolated yield. Values in parentheses were based on consumed C₆₀.

product with acceptable yields of 23% and 22% (entries 2 and 3). Nevertheless, $K_2S_2O_8$ provided a better result with a yield of 28% (entry 4). The choice of acid proved very crucial too. Without the addition of an acid, only a trace amount of product **2a** was obtained (entry 5). Other acids including

⁽⁶⁾ Cu: (a) Tsunenishi, Y.; Ishida, H.; Itoh, K.; Ohno, M. *Synlett* **2000**, 1318. (b) Wang, G.-W.; Li, F.-B. *Org. Biomol. Chem.* **2005**, *3*, 794. (c) For a review on the reactions of fullerenes involving organocopper reagents, see: Matsuo, Y.; Nakamura, E. *Chem. Rev.* **2008**, *108*, 3016.

⁽⁷⁾ Ru, Fe, and Ce: (a) Gan, L.; Huang, S.; Zhang, X.; Zhang, A.; Cheng, B.; Cheng, H.; Li, X.; Shang, G. J. Am. Chem. Soc. 2002, 124, 13384. (b) Huang, S.; Xiao, Z.; Wang, F.; Gan, L.; Zhang, X.; Hu, X.; Zhang, S.; Lu, M.; Pan, Q.; Xu, L. J. Org. Chem. 2004, 69, 2442. (c) Cheng, X.; Wang, G.-W.; Murata, Y.; Komatsu, K. Chin. Chem. Lett. 2005, 16, 1327. (d) Xiao, Z.; Wang, F.; Huang, S.; Gan, L.; Zhou, J.; Yuan, G.; Lu, M.; Pan, J. J. Org. Chem. 2005, 70, 2060. (e) Wang, F.; Xiao, Z.; Yao, Z.; Jia, Z.; Huang, S.; Gan, L.; Zhou, J.; Yuan, G.; Lu, M.; Pan, S.; Gan, L.; Zhou, J.; Yuan, G.; Mang, S.; Gan, L.; Zhou, J.; Yao, Z.; Jia, Z.; Huang, S.; Gan, L.; Zhou, J.; Yuang, G.-W. J. Org. Chem. 2008, 73, 6417.

⁽⁸⁾ Co: (a) Martin, N.; Altable, M.; Filippone, S.; Martin-Domenech, A. *Chem. Commun.* **2004**, 1338. (b) Martin, N.; Altable, M.; Filippone, S.; Martin-Domenech, A.; Poater, A.; Sola, M. *Chem.–Eur. J.* **2005**, *11*, 2716.

⁽⁹⁾ Pb: (a) Chuang, S.-C.; Clemente, F. R.; Khan, S. I.; Houk, K. N.; Rubin, Y. Org. Lett. **2006**, *8*, 4525. (b) Troshina, O. A.; Troshin, P. A.;

Peregudov, A. S.; Lyubovskaya, R. N. *Mendeleev Commun.* **2007**, *17*, 113. (10) Mn :Wang, G.-W.; Li, F.-B. J. Nanosci. Nanotechnol. **2007**, *7*, 1162, and references cited therein.

 ⁽¹¹⁾ W: (a) Tzirakis, M. D.; Orfanopoulos, M. Org. Lett. 2008, 10, 873.
 (b) Tzirakis, M. D.; Orfanopoulos, M. J. Am. Chem. Soc. 2009, 131, 4063.

 ⁽b) Izirakis, M. D.; Orlanopolilos, M. J. Am. Chem. Soc. 2009, 151, 4005.
 (12) (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (b) Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069. (c) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (d) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.

Table 2. Results for the Pd-Catalyzed Reaction of C_{60} with Anilides $1a\!-\!i^{\alpha}$

		$ \begin{array}{c} Pd(OAc)_2 \ (10 \ \text{mol} \ \%) \\ PTSA \ (1 \ equiv) \\ K_2 S_2 O_8 \ (5 \ equiv) \\ \hline ODCB/CH_3 CN \ (8:1) \\ 130 \ ^\circ C, \ 24 \ h \end{array} $		
entry	substrate 1	product 2	yield $(\%)^b$	recovered C_{60} (%)
1		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ 2a \end{array} $	39 (83)	53
2	H N 1b		40 (78)	49
3			41 (87)	53
4			34 (85)	60
5°			20 (91)	78
6 ^{<i>d</i>}			36 (78)	54
7	H Ig		43 (77)	44
8			33 (87)	62
9	Ii H H Ph O		53 (69)	23

^{*a*} Unless otherwise specified, all the reactions were performed with 0.050 mmol of C₆₀, 0.25 mmol of **1**, 0.050 mmol of PTSA, 0.25 mmol of K₂S₂O₈, and 0.0050 mmol of Pd(OAc)₂ in ODCB (4 mL)/CH₃CN (0.5 mL) at 130 °C for 24 h. ^{*b*} Isolated yield. Values in parentheses were based on consumed C₆₀. ^{*c*} The reaction was performed with 0.050 mmol of C₆₀, 0.25 mmol of **1d**, 0.025 mmol of Pd(OAc)₂, and 0.050 mmol of PTSA in chlorobenzene (8 mL) at 130 °C for 1.5 h. ^{*d*} The reaction was performed with 0.050 mmol of PG(OAc)₂, and 0.050 mmol of Pd(OAc)₂, and 0.050 mmol of PTSA in chlorobenzene (8 mL) at 130 °C for 0.5 h.

camphorsulfonic acid (CSA) and 12-phosphotungstic acid (PWA) were less effective, giving 2a in 15% and <5% yields, respectively (entries 6 and 7). The critical role played by TsOH was believed to be the in situ formation of a more reactive mono- or bistosylate species from the Pd(OAc)₂ precatalyst,¹⁵ thus promoting the current heteroannulation of C₆₀. The effect of solvents was also vital to the catalytic reaction. Notably, replacing CH₃CN with THF or DMF as the cosolvent led to an obvious decrease in the yield of product 2a (entry 4 vs entries 8 and 9). It was reported that solvents showed drastic effects on palladium-mediated C-H functionalizations.^{13a,b,14b,c} The poor results for THF and DMF relative to that of CH₃CN as the cosolvent might be due to their stronger coordination to the Pd catalyst, and hence hampering the catalytic reaction. To our satisfaction, the highest yield was achieved by decreasing the volume of the solvent to increase the reaction concentration. With a mixture of ODCB (4 mL) and CH₃CN (0.5 mL) as the solvent, product 2a was obtained in 39% yield (entry 10). It should be noted that acetonitrile was added in the above conditions to increase the solubility of the employed inorganic salts.

With the optimal conditions in hand, the scope of this annulation was explored by using a variety of substrates as illustrated in Table 2. We were pleased to find that a wide variety of anilides could be employed and furnished the desired C_{60} -fused indoline derivatives 2a-i in synthetically valuable yields. Substrates bearing electron-donating groups (1b, 1c) and weak electron-withdrawing group (1d) on the para position of the phenyl ring afforded products 2b-d in good yields comparable to that of anilide 1a (Table 2, entries 2-4 vs entry 1). However, substrate **1e** substituted with an electron-withdrawing ketone group on the para position of the phenyl ring retarded the reaction obviously, giving the corresponding product 2e only in 20% yield even by increasing the Pd(OAc)2 loading to 50 mol % (Table 2, entry 5). It is known that ortho substitution inhibits¹⁵ or hampers^{13c,d} the Pd-catalyzed ortho C-H insertions. Therefore, it was not surprising that the o-methyl substitution on substrate 1f greatly reduced the reaction yield and selectivity under standard reaction conditions. Fortunately, the corresponding product 2f could be obtained in good yield utilizing 50 mol % of Pd(OAc)₂ only after 0.5 h (Table 2, entry 6). When anilides were substituted at the meta position, products resulting from the reactions at the less sterically hindered positions were regioselectively obtained in good yields (Table 2, entries 7 and 8). Interestingly, N-benzoylated aniline 1i was found to be also an effective substrate and showed higher reactivity than acetanilide 1a (Table 2, entry 9). Compared to our previous method^{3f} for the synthesis of fulleroindolines, the present reaction allowed the synthesis of diverse fulleroindolines utilizing a wide variety of commercially available anilides as substrates and lower catalyst loading (down to 10 mol % $Pd(OAc)_2$ in most cases). In addition, functional groups such as Cl, CH₃CO, and CH₃O could be tolerated and did not alter the reaction site for the C-H bond activation.

Products 2a^{3f} and 2h^{3f} are known compounds, and their identities were confirmed by comparison of their spectral data with those reported previously by us. New compounds 2b-g and 2i were unambiguously characterized by their HRMS, ¹H NMR, ¹³C NMR, FT-IR, and UV-vis spectral data. All of the MALDI or ESI FT-ICR mass spectra of these fulleroindoline products gave the correct molecular ion peaks. The ¹³C NMR spectra of fulleroindolines 2b-g and 2i clearly exhibited less than 30 peaks with two half-intensity ones in the range of 134-153 ppm for the sp²-carbons of the fullerene cage and two peaks at 86-87 and 70-72 ppm for the two sp³-carbons of the fullerene skeleton, consistent with the C_s symmetry of their molecular structures. The chemical shifts for the two C_{60} sp³-carbons of fulleroindolines 2b-gand 2i are close to those of fullerene derivatives with the nitrogen atom^{1j,3f,18} and sp²-carbon atom^{3f,18} attached to the C₆₀ skeleton, respectively. The typical chemical shifts at 167-172 ppm in the ¹³C NMR spectra and the absorptions at 1661–1678 cm⁻¹ in the IR spectra of 2b-g and 2iindicated the presence of an amide moiety. Their UV-vis spectra displayed a characteristic peak at 427-429 nm, which is a diagnostic absorption for the 1,2-adduct of C₆₀.^{1j,3f,18}

On the basis of the above reaction results and previous acetamino-assisted Pd-catalyzed C–H bond functionalizations,^{13,14} a plausible mechanism is shown in Scheme 3. The

reaction is presumably initiated by an amide-directed insertion of Pd(II) complex into the aryl ortho C-H bond of anilides to afford intermediate **A**, followed by insertion of C_{60} into the arylpalladium bond to yield intermediate **B**. Subsequent reductive elimination of intermediate **B** generates fulleroindolines and Pd(0). The latter is reoxidized to Pd(II) by the oxidant to complete the catalytic cycle. The suggested ortho C–H insertion/carbopalladation/cyclization sequence for the Pd(II)-catalyzed 1,2-carboamination of dienes with *N*-aryl ureas¹⁵ further supports our proposed reaction mechanism.

In conclusion, we have successfully accomplished the synthesis of a wide variety of fulleroindolines in a highly regioselective manner via Pd-catalyzed annulation of C_{60} with readily available anilides instead of *o*-iodoanilines. Importantly, we have demonstrated the first example of exploiting the C–H bond activation strategy to functionalize fullerenes. A possible reaction mechanism was proposed to explain the formation of fulleroindolines.

Acknowledgment. The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 20572105 and 20621061) and the National Basic Research Program of China (2006CB922003).

Supporting Information Available: Detailed experimental procedures and characterization data, as well as the ¹H NMR and ¹³C NMR spectra of 2b-g and 2i. This material is available free of charge via the Internet at http://pubs.acs.org.

OL901675T

(13) (a) Tremont, S. J.; Rahman, H. U. J. Am. Chem. Soc. 1984, 106, 5759. (b) Wang, Z.; Zhang, Z.; Lu, X. Organometallics 2000, 19, 775. (c) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1586. (d) Lee, G. T.; Jiang, X.; Prasad, K.; Repič, O.; Blacklock, T. J. Adv. Synth. Catal. 2005, 347, 1921. (e) Zaitsev, V. G.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 6066. (g) Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.; Cao, B.; Qin, C.; Wang, Y. Angew. Chem., Int. Ed. 2007, 46, 5554. (h) Shabashov, D.; Daugulis, O. J. Org. Chem. 2007, 72, 7720. (i) Li, B.; Tian, S.; Fang, Z.; Shi, Z. Angew. Chem., Int. Ed. 2008, 47, 1115. (14) (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem.

[14] (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560. (b) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 7416. (c) Wang, G.-W.; Yuan, T.-T.; Wu, X.-L. J. Org. Chem. 2008, 73, 4717.

(15) Houlden, C. E.; Bailey, C. D.; Ford, J. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. *J. Am. Chem. Soc.* **2008**, *130*, 10066.

(16) Houlden, C. E.; Hutchby, M.; Bailey, C. D.; Ford, J. G.; Tyle, S. N. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. *Angew. Chem., Int. Ed.* **2009**, *48*, 1830.

(17) (a) Desai, L. V.; Malik, H. A.; Sanford, M. S. *Org. Lett.* **2006**, *8*, 1141. (b) Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. **2006**, *128*, 14047.

(18) Wang, G.-W.; Yang, H.-T.; Miao, C.-B.; Xu, Y.; Liu, F. Org. Biomol. Chem. 2006, 4, 2595.