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Abstract: A short and efficient synthesis of substituted pyrroles
was accomplished in good yields via the novel coupling cyclization
reaction of 1,3-diketones with imines or oximes promoted by TiCl4/
Zn system.
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The pyrrole ring constitutes a basic heteroaromatic struc-
ture. It is a vital building block for the construction of por-
phyrins and alkaloids.1 Several substituted pyrroles have
potential as fungicids and bactericides and as active com-
ponents of nonsteroidal anti-inflammatory drugs inhibit-
ing human cyclooxygenase.2 Although there are a number
of potentially useful methods for the synthesis of pyr-
roles,3 the Knorr4 method is a classical method. Recently,
several methods have been developed for the synthesis of
this heterocyclic system, e.g. Ishii et al. have reported the
synthesis of pyrroles via samarium-catalyzed three-com-
ponent coupling reaction of aldehydes, amines and ni-
troalkanes,5 and one-pot synthesis of pyrroles via three-
component condensation of a carbonyl compound, an
amine and a nitroalkene in a molten ammonium salt.6

Ranu et al.7 have also reported the synthesis of pyrroles on
the surface of silica gel and alumina under microwave ir-
radiation. Some one-pot pyrroles synthesis starting from
imines have been reported recently, e.g. Gao et al. have re-
ported the synthesis of substituted pyrroles from alkynes,
imines, carbon monoxide via an organotitanium
intermediate8 or from alkynes, nitriles, imines and titani-
um-imine complexes.9 Lee et al. have reported a one-pot
synthesis of substituted pyrroles from propargylic dithio-
acetals,10 and Katritzky et al. have also reported the
synthesis of 1,2,3-triarylpyrroles from 1-benzylbenzotri-
azoles via [1+2+2] annulation.11 However, these are not
always satisfactory with respect to ease of operation, yield
and general applicability. Therefore, the development of
novel and convenient synthetic methods for the prepara-
tion of pyrrole derivatives still remains as active research
area.

Low-valent titanium reagents have an exceeding high
ability to promote reductive coupling of carbonyl com-

pounds and are attracting increasing interest in organic
synthesis.12 Many other functional groups can be react-
ed.13 Recently, we have reported the low-valent titanium-
induced intermolecular reductive coupling reaction of
carboxylic derivatives with aromatic ketones,14 the in-
tramolecular reductive coupling reaction of 4,4-dicyano-
1,3-diaryl-1-butanone15 and the cyclodimerization of a,b-
unsaturated ketones.16 In the course of our work on the ap-
plication of low-valent titanium reagents in the prepara-
tion of bioactive heterocyclic compounds, we have
reported the synthesis of quinazolin-4(3H)-ones, quinazo-
lines and imidazo[1,2-c]quinazolines with the aid of low-
valent titanium reagent.17 Here we wish to describe a
method induced by the TiCl4/Zn system for the prepara-
tion of pyrroles using 1,3-diketones, imines and oximes as
the starting materials.

When 1,3-diketone 1 and imine 2 were treated with low-
valent titanium prepared from titanium tetrachloride and
zinc powder in anhydrous THF, the coupling cyclization
products 1,2,3,5-tetrasubstituted pyrroles 318 were ob-
tained in good yields (Scheme 1). The results are summa-
rized in Table 1.

Scheme 1

From Table 1, it was found that the TiCl4/Zn system could
efficiently promote the reductive cyclization of 1,3-dike-
tone and imine to give pyrroles with different substitution
patterns. In particular, the substituents at N and C-2 on the
newly formed heteroatomic ring can be easily varied by
condensation of aromatic aldehydes with different aro-
matic amines. Unfortunately, when 2,4-pentanedione (3k)
or ethyl acetoacetate (3l) and 2a was treated with TiCl4/Zn
system under the same reaction conditions they failed to
give the desired pyrrole products and only the self-cou-
pling product of imine was obtained. It seems that both, R1

and R2, should be aryl groups; otherwise, the reductive
cross-coupling process could not take place. The inertness
of these two substrates toward TiCl4/Zn system may be
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due to the instability of the possibly formed ketyl interme-
diate resulting from an acetyl.

A plausible mechanistic pathway to pyrrole is illustrated
in Scheme 2, though the details are unclear as yet.

Scheme 2 

TiCl4 is reduced by Zn dust to give low-valent titanium. In
the initial steps, and electron is transferred from low-va-
lent titanium to 1,3-diketone 1 or imine 2 to give radical
anion A and B, respectively, the two radical anions then
couple to form the carbon-carbon bond and generates in-
termediate C. The latter then takes place by nucleophilic
addition to give the intermediate D, which occurs deoxy-

genation to form radical E. The radical E loses two hydro-
gen atoms to form the pyrrole 3.

Moreover, treatment of dibenzoylmethane 1 and oximes 4
with TiCl4/Zn system in anhydrous THF under the same
reaction conditions, the cross-coupling products 2,3,5-
trisubstituted pyrroles 5 were obtained in moderated
yields (Scheme 3). The results are summarized in Table 2.

Scheme 3

The structures 3 and 5 were identified by IR, 1H NMR,
MS and elemental analysis.19 The structure of 3g was fur-
ther confirmed by X-ray analysis (Figure 1).20

Figure 1 ORTEP diagram of 3g

In summary, a series of 1,2,3,5-tetrasubstituted pyrroles
and 2,3,5-trisubstituted pyrroles were synthesized via
coupling cyclization of 1,3-diketones with imines or
oximes induced by the TiCl4/Zn system. The advantages
of our method are the easily accessible starting materials,
convenient manipulation and moderate to high yields.

Table 1 The Synthesis of 1,2,3,5-Tetrasubstituted Pyrroles Promot-
ed by Low-Valent Titanium

Product R1 R2 R3 R4 Isolated 
yield (%)

3a C6H5 C6H5 C6H5 C6H5 75

3b C6H5 C6H5 4-CH3C6H4 4-CH3C6H4 70

3c C6H5 C6H5 4-ClC6H4 C6H5 71

3d C6H5 C6H5 4-CH3OC6H4 C6H5 80

3e C6H5 C6H5 4-ClC6H4 4-CH3C6H4 79

3f C6H5 C6H5 4-CH3OC6H4 4-CH3C6H4 81

3g C6H5 C6H5 4-ClC6H4 4-ClC6H4 77

3h C6H5 C6H5 4-CH3C6H4 C6H5 75

3i C6H5 C6H5 4-CH3C6H4 4-ClC6H4 68

3j C6H5 C6H5 4-CH3OC6H4 4-ClC6H4 69

3k CH3 CH3 4-CH3C6H4 4-CH3C6H4 0

3l CH3 OC2H5 4-CH3C6H4 4-CH3C6H4 0
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Table 2 The Synthesis of 2,3,5-Trisubstituted Pyrroles Promoted 
by Low-Valent Titanium

Product Ar Isolated yield (%)

5a 3,4-(CH3O)2C6H3 72

5b 3,4-OCH2OC6H3 69

5c 2,4-Cl2C6H3 65

5d 4-BrC6H4 62
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