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Abstract

Suzuki and Stille cross-coupling reactions are surveyed for site-selective C-4 and C-5 elaboration of
2-(phenylsulfonyl)-1,3-oxazole derivatives. Conditions for mild reductive desulfonylations provide
for direct incorporation of the intact oxazole heterocycle through bonding at C-4 and C-5.
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Oxazoles represent an important class of five-membered heterocycles.! In recent years, this
heterocyclic system has frequently been identified as a significant structural feature, embedded
within the architecture of complex natural products.? Several interesting antibiotics
prominently display 1,3-oxazoles as a result of cyclodehydration of serine or threonine residues
in the course of biosynthesis.® Not surprisingly, a number of cyclodehydration strategies,
beginning with acyclic amides, have been developed to provide for the de novo preparation of
substituted 1,3-oxazoles. These pathways for oxazole synthesis have limitations, which are
often based on the reactivity and the availability of the starting amide precursors. As a result,
there is a need for generally applicable techniques, which permit regioselective incorporation
of the intact oxazole heterocycle. Our studies have documented a synthetic design utilizing 2-
(phenylsulfonyl)-1,3-oxazole (1) for site specific arylations, alkenylations, and alkylations of
the heterocyclic ring leading to the production of 2,4- and 2,5-disubstituted oxazoles 2 as well
as 4- and 5-monosubstituted-1,3-oxazoles 3 (Scheme 1).

Several laboratories have described examples of cross-coupling processes of arylation and
alkenylation at C-2 of the oxazole nucleus, and Stille reactions of 2-phenyl-1,3-oxazole have
led to C-4 and C-5 arylation reactions.® Recently, Stambuli and coworkers have described the
selective C-5 deprotonation of 2-methylthio-1,3-oxazole with tert-butyllithium affording
access to 2,5-disubstituted oxazoles.” These efforts have advanced the previous studies of
Shafer and Molinski,8 as well as a previous report by Marino and Nguyen disclosing the
regioselective allylation of 2-(n-butylthio)-1,3-oxazole.?
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In 1997, we reported the site-selective (C-4) deprotonation of 1-[2'-(trimethylsilyl)
ethoxymethyl]-2-(phenylsulfonyl)-imidazole (4), and subsequent reactions with a variety of
electrophiles (Scheme 2).10 As illustrated with the formation of 6, mild removal of SEM
protection and reductive desulfonation with 2% Na(Hg) provided a scheme for imidazole
incorporation.

Our studies also examined the analogous (C-5) ring metalation of 2-(phenylsulfonyl)-1,3-
oxazole and alkylations of this reactive carbanion. Subsequent reactions for displacement of
the 2-(phenylsulfonyl) group have established a general route to 2,5-disubstituted-1,3-
oxazoles.11 Prior literature reveals relatively little information regarding useful methods for
C-4 and C-5 halogenation of oxazoles.12 However, the well-behaved carbanion from 7
(Scheme 3, R = SO,Ph, X = Li) facilitates convenient halogenation and stannylation reactions
yielding 9 and 10, respectively.! Furthermore, we have shown that 5-bromo-2-
(phenylthio)-1,3-oxazole (8) undergoes a facile base-induced isomerization, characterized as
a halogen dance rearrangement to provide access to the 4-bromo-1,3-oxazole 11 (85%).13 In
this letter, we have described a survey of Suzuki and Stille cross-coupling reactions, which
demonstrate the utility of these derivatives for a convenient general preparation of 2,5- and
2,4-disubstituted oxazoles. In addition, we have documented the use of sodium hydrosulfite
for reductive desulfonylations to yield C-4 and C-5 monosubstituted-1,3-oxazoles.

A compilation of our results for Suzuki cross-coupling arylation reactions is summarized in
Table 1. These reactions have evaluated the effective use of the C-5 iodide 9 and C-4 bromide
11 with a series of commercially available arylboronic acids. High yields of the expected
products are uniformly obtained using 10 mol% Pd(PPh3)4 at 70 °C to 80 °C in a mixture of
THF and toluene containing aqueous Na,CO3 or KoCO3 (2:2:1 by volume).

The effective coupling of iodide 9 or bromide 11 with boronic acids suggested its use as a
cross-coupling partner in Stille reactions. Indeed, this expection is confirmed by the Stille
reactions of 9 and 11 with tri-n-butylvinylstannane (1.2 equiv) under standard conditions to
afford oxazoles 20 and 21 in 85% and 74% yields, respectively (Table 2). Likewise, Stille
coupling also proceeded uneventfully to afford the trisubstituted alkene 22.

To survey the utility of Stille cross-coupling reactions of the readily available 5-(tri-n-
butylstannyl)oxazole 10 (from Scheme 3), we employed a variety of aryl, alkenyl and allyl
halides. The results of this study are summarized in Table 3. In this regard, the Stille reaction
leading to the C-5 linked bisoxazole 24 (entry 3) is particularly noteworthy, and entry 4
documents the facile formation of the conjugated trisubstituted alkene 25 in excellent yield.
Entry 6 indicates that w-allyl Stille reactions of stannane 10 will produce regioisomeric
products. However, prenylation predominantly leads to bond formation at the less hindered
allylic position giving 27 as the major isomer (ratio 7:1).

Finally, our studies have found conditions for the mild reductive desulfonylation of 2-
(phenylsulfonyl)-1,3-oxazoles using aqueous sodium hydrosulfite. A survey of reactions in
Table 4 demonstrates the effective replacement of the C-2 sulfonyl substituent with hydrogen.
Reactions are conducted with excess sodium hydrosulfite (5 equiv) in aqueous N-
methylpyrrolidone (1:1 by volume) in the presence of sodium bicarbonate at 80 °C. These
reductions were complete within three hours and have consistently provided good yields of the
desired 4- and 5-monosubstituted-1,3-oxazoles. Common O-protecting ethers (PMB and THP)
are stable under the reaction conditions, whereas the labile N-Boc protection of the indoles
31 and 34 is cleaved via hydrolysis.

In summary, our studies of ring metalation of the oxazole nucleus have provided convenient
access to C-4 and C-5 halogenation and C-5 stannylation for use in cross-coupling reactions.
A survey of Suzuki and Stille processes for arylation and alkenylation demonstrates broad
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versatility of these oxazole derivatives as coupling partners, and illustrates a general strategy
for the regioselective preparation of 2,4- and 2,5-disubstituted-1,3-oxazoles. These findings
provide for the incorporation of the intact oxazole heterocycle through bonding at C-4 or C-5
by using the phenylsulfonyl moiety as a blocking unit of the reactive C-2 position. Mild
conditions for reductive desulfonylation have been described. Applications for natural product
synthesis will be reported in due course.
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Scheme 1.
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Scheme 2.
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Scheme 3.
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Table 1
Suzuki arylations of 5-iodo (9) or 4-bromo-2-(phenylsulfonyl)-1,3-oxazole (11)

ArB(OH); (2.0 equiv)

Pho?sm/o 10 mol% Pd(PPhg), Pho?sm/o .
X Y/ 1
N~ THF, toluene, 2 M Na;COs N\f
Y or KCO3, 70-80 °C, 12-24 h Rz
9 X=I,Y=H 12-16 Ry =Ar,Rz=H
11 X=H, Y=8Br 17-19 Ry =H, Ry = Ar
Entry  Boronic acid Product? Yield (%)P
1 PhO.S.__ o 12 9
B(OH), ™y
f N/
2 B(OH),  ros_o M 13 %
©\ 7\}/ |

3 B (O H)2 PthSYC; F 14 92
@F

* BOH)p s o B
|
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ArB(OH); (2.0 equiv)

PhO.S = 10 mol% Pd(PPhg), PhOQSYO .
X Y/ 1
N\’?; THF, toluene, 2 M Na,CO4 N\gi
Y or K,CO3, 70-80 °C, 12-24 h Ro
9 X=IY=H 12-16 Ry = Ar, Ry = H
11 X=H,Y=8Br 17-19 Ry =H, R: = Ar
Entry  Boronic acid Product® Yield (%)b
O 17 96
PhO,5— ]\@\
N
OMe
0 18 89
PhO,S—4 |
N =
(0]
o 19 87
PhO,s— |
N =
N
/ BOC Boc”
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aReaction conditions: Under N2 atmosphere, Pd(PPh3)4 (10 mol%) was added into a degassed mixture of sulfone 9 (1.0 equiv) and aryl boronic acid
(2.0 equiv) in THF, toluene and 2M aqueous NapCO3/K2CO3 (2:2:1 by volume) (0.04 M concentration), and the reaction was heated to 70-80 °C;

ineIds are provided for purified products following flash silica gel chromatography.

Synlett. Author manuscript; available in PMC 2011 July 1.



Page 9

Williams and Fu

‘AydesBorewo.yd 96 earpis yseyy Buimoyjoy s1onpoud paiyrind 1oy papinoid ale spjal >n

Do 06-08 01 Pajeay alam suondeal pue ‘(UoIeAUSIU0D N S0'0) OSIAIA Ul (AInba 9) |D17

pue (Anba g) |oND Jo aduasaid ayl ul (AINba z'T) apijey d1uehio pue (Ainba 0°'T) 0T auoyns Bulureiuod ainixiw passehiap e ojul pappe sem (910w OT) 7(Eudd)pd ‘@4aydsowre CN Japun :SUOIIPUOD co:ommmm

NIH-PA Author Manuscript

C,
N o ud°os
N
7 HO | v\|O
CHOTX N P/
ando oH | OHNd
oo X fngus” OfH id £
4
/ v\|o
z/m E N_
€
v, 1z AN Dm u m 19 4
4
=N =N
OV\ E O
€
%8 0z = Dm u m | 1
q(%) PIRIA g}onpoid aueUUE)S sjozexo  Anu3
"=AH=X kt
2202 H=AI=X 6
2y 00 06-08 ‘OSWA A
N ~ 1Pnoon xlm\f_z
o\FwNoc d (low 01) P(Eydd)pd o\meosn_
(ninba g'1) ngusy
1T PUE § S3|0ZEXO JO UOIIIRal 3||1NS
¢ 9l|qel

NIH-PA Author Manuscript NIH-PA Author Manuscript

Synlett. Author manuscript; available in PMC 2011 July 1.



1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duosnue Joyiny vd-HIN

Williams and Fu

Table 3

Stille cross-coupling reactions of oxazole 10

RX (1.2 equiv)
10 mol% Pd(PPhs), PhO,S

o
T Toa
Nfsnaua LiCl, CuCl N\’%

10 DMSO, 60-80 °C

PhO,S

23-28

Entry Halide Product® Yield (%)b

1 PhOS_ o 23 96
| oo

-

CHO

OMe 13 98

PhOZS\Nlr(; :f
i OMe

|
3 B PhOS_ o 24 71
r NN
Y/ |
N\)_Q\SPh

o

N=

2

SPh

HaC | WG s 25 92
PhO,S
PMBOL | W}Q{’i i
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PhO,S

1

o
N ° T y—r
Nfsnaua LiCl, CuCl N\’%
0

RX (1.2 equiv)

10 mol% Pd(PPhs), PhO2S

DMSO, 60-80 °C

Entry Halide

23-28
Product? Yield (9%6)P
5 Phongo __ 26 94
Br o
Br mose 7
N_/
PhO,S 28

lvas
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aReaction conditions: Under N2 atmosphere, Pd(PPh3)4 (10 mol%) was added into a degassed mixture containing sulfone 10 and organic halide (1.2

equiv) in the presence of CuCl (5 equiv) and LiCl (6 equiv) in DMSO (0.05 M concentration), and reactions were heated to 60-80 °C;

ineIds are provided for purified products following flash silica gel chromatography;

CRatio for 27 and 28 is 7:1.
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Table 4

Reductive desulfonylation with sodium hydrosulfite

NazS:0, (5 equiv) H
P“O«?SYO NaHCOj (10 equiv) O
I/ R4 I\II/ Ry
N NMP:H,O (1:1), 80 °C
R;_» H2
Entry  Sulfone Product® Yield (%)b
1 PhOS. o oOH H 29 89
N \ro OH
N |
;9 N
0]
7 /
7
2 PhOS._ o on H 30 92
N/ | y
N
3 Boc H 31 89
PhO,S \ .
O
N N/ N\
4 OTHP OTHP 32 93
PhOS.__o
Y/ 7 HYO /)
N CHg Nl Y
5 HG, 4y 33 97
6 34 91
7 PhO,S.__o Ho o 35 94
e
¥ 1
He ) CHs —
pmBo”  \_ HsC CHs
PMBO _
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aReaction conditions: Sulfone (1.0 equiv) was added into a mixture of N-methylpyrrolidone and water (1:1 by volume) (0.05 M concentration)

containing sodium bicarbonate (10 equiv) and sodium hydrosulfite (5 equiv) at room temperature;

ineIds are provided for purified products following flash silica gel chromatography.
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