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Abstract: A stereoselective synthesis of the C1-C12 fragment of
the naturally occurring, cytotoxic macrolide FD-891, is described.
The initial chirality was created via an asymmetric Evans aldol re-
action. Two other asymmetric reactions, a Sharpless epoxidation
and an aldehyde Brown allylation were further key steps of the
synthesis.
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The cytotoxic metabolite FD-891 was isolated from the
fermentation broth of Streptomyces graminofaciens A-
8890 and was found active against several tumor cell
lines. In addition, it was found to potently prevent both
perforin- and FasL-dependent CTL-mediated killing path-
ways. In contrast to the structurally related concanamycin
A, however, it was unable to inhibit vacuolar acidifica-
tion. According to the results of chemical degradations
and X-ray diffraction analyses of the degradation prod-
ucts, the structure of FD-891 was reported two years ago
to be that depicted below (Figure 1).1 In line with this
structural assignment, we performed a stereoselective
synthesis of the whole side chain of the molecule, a frag-
ment with seven stereocenters.2 However, the group
which investigated FD-891 two years ago reported this
year a correction of its structure, which now turns out to
be as shown in Figure 1.3 While no changes in stereo-
chemistry have resulted from this structural change, one
olefinic bond has now been moved from inside the ring to
the side chain. In view of this, we have seen ourselves in
the need of carrying out a substantial modification of the
initial synthetic plan. Fortunately, most of the ring part of
the molecule has remained untouched by the structural
amendment, so that we have been able to use a part of our
previous synthetic sequence.

For our modified synthesis of this bioactive metabolite,
we have chosen the retrosynthetic plan shown in
Scheme 1 (P, P¢, P¢¢ = protecting groups). According to it,
the molecule of FD-891 is disconnected to fragments A
(C1-C12, the extra carbon atom is to be removed later via
oxidative cleavage), B (C13-C18) and C (C19-C26). The

reactions planned to connect these three fragments are a
macrolactonization4 and two Julia olefinations.5

In the present communication, we describe the synthetic
work performed to achieve the preparation of fragment A
(P = TBDMS).6 This fragment contains five out of the
twelve sp3 stereocenters of the molecule and was retrosyn-
thetically disconnected as shown below in Scheme 2. One
key structural retrotransformation (A → I) is the stereose-
lective allylation of a chiral a,b-epoxyaldehyde while the
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Scheme 1 Retrosynthetic analysis of FD-891.
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other (III → IV) is an aldol reaction intended to add the
Me-C4-C5 propionate segment. The other two propionate
segments are added via Wittig olefinations (II → III).

Scheme 3 depicts the actual synthetic sequence, which led
to A. The commercially available (Z)-2-butene-1,4-diol
was first converted into its monoprotected derivative 1
( = IV with R = PMB, p-methoxybenzyl),7 PCC oxidation
of which afforded the (E)-2-butenal 2.8 The aldol reaction
which generates the initial chirality was performed with
the aid of the Evans methodology.9 To this purpose, N-
propionyl oxazolidinone (10) was converted into its boron
Z-enolate and added to aldehyde 2. This furnished aldol
adduct 3, which was then converted into Weinreb amide
4.10 Since this product proved difficult to purify, it was
used in crude form in the next silylation step. Compound
5 was then reduced with DIBAL to the corresponding al-
dehyde (H replacing NMeOMe), which, without chro-
matographic purification, was taken to the Wittig
olefination step. This afforded the conjugated enoate 6,11

which was subjected to a second reduction–olefination se-
quence to yield the conjugated dienoate 7. Cleavage of the
PMB protecting group with DDQ12 in wet CH2Cl2 was
followed by an asymmetric Sharpless epoxidation.13 The
resulting epoxy alcohol 9 was then oxidized to the corre-
sponding aldehyde and the latter was subjected in crude
form to asymmetric allylation using the chiral B-allyl di-
isopinocampheylborane (allylBIpc2) prepared from allyl-
magnesium bromide and (+)-DIP-Cl (diisopino-
campheylboron chloride).14 This procedure furnished in
66% overall yield a homoallyl alcohol as an 85:15 mixture
of diastereomers. Subsequent silylation finally gave the
desired product A.15–17

In summary, a stereoselective synthesis of the C1-C12
fragment of the cytotoxic macrolide FD-891 has been
achieved. Studies towards the total synthesis of the natural
product are underway and will be published in due course.
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Table 1 Comparison of Spectroscopic Data of Compounds A and FD-891

Atom FD-891 A Atom FD-891 A

H-3 7.30, t (1.3) 7.10, br s C-1 168.9 169.1

H-5 5.53, d (10.3) 5.55, d (10.0) C-2 124.3 125.9

H-6 3.12, ddq (10.3, 4.1, 6.9) 2.68, ddq (10.0, 5.0, 6.8) C-3 144.0 138.1

H-7 4.17, dd (6.0, 4.1) 3.61, dd (5.0, 4.0) C-4 135.7 131.9

H-8 3.25, dd (6.0, 2.5) 2.88, dd (4.0, 2.2) C-5 141.6 134.5

H-9 3.15, dd (2.5, 0.8) 2.96, dd (5.5, 2.2) C-6 35.9 37.7

H-10 3.55, m 3.48, dt (5.5, 6.5) C-7 70.8 73.0

H-11 2.55, m, 2 H 2.28, t, 2 H (6.5) C-8 55.1 57.2

MeC2 2.10, d (1.2) 2.00, d (1.3) C-9 56.0 58.5

MeC4 2.03, d (1.2) 1.85, d (1.0) C-10 71.1 73.6

MeC6 1.15, d (6.9) 1.06 d (6.8) C-11 37.9 39.5

MeC2 13.6 14.0

MeC4 15.5 15.7

MeC6 16.5 16.6
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