ISSN 1070-4280, Russian Journal of Organic Chemistry, 2009, Vol. 45, No. 12, pp. 1790–1794. © Pleiades Publishing, Ltd., 2009. Original Russian Text © N.V. Poplevina, A.P. Kriven'ko, O.A. Shchelochkova, A.G. Golikov, S.F. Solodovnikov, 2009, published in Zhurnal Organicheskoi Khimii, 2009, Vol. 45, No. 12, pp. 1796–1799.

## Synthesis and Structure of (Thio)semicarbazonocyclohexanedicarboxylates. Crystalline and Molecular Structure of Diethyl 4-Hydroxy-4-methyl-2-phenyl-6-thiosemicarbazonocyclohexane-1,3-dicarboxylate

N. V. Poplevina<sup>a</sup>, A. P. Kriven'ko<sup>a</sup>, O. A. Shchelochkova<sup>b</sup>, A. G. Golikov<sup>a</sup>, and S. F. Solodovnikov<sup>c</sup>

<sup>a</sup> Chernyshevskii Saratov State University, ul. Astrakhanskaya 83-1, Saratov, 410012 Russia e-mail: PoplevinaNV@mail.ru

<sup>b</sup> Saratov State Medical University, Saratov, Russia

<sup>c</sup> Nikolaev Institute of Inorganic Chemistry, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia

## Received April 2, 2009

**Abstract**—Diethyl 2-aryl-4-hydroxy-4-methyl-6-(thio)semicarbazonocyclohexane-1,3-dicarboxylates were synthesized, and their structure was determined by <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy, including the HSQC technique. The molecular and crystalline structure of diethyl 4-hydroxy-4-methyl-6-thiosemicarbazono-2-phenylcyclohexane-1,3-dicarboxylate was determined by X-ray analysis.

DOI: 10.1134/S1070428009120070

Polycarbonyl compounds of the dialkyl 2-aryl-4hydroxy-4-methyl-6-oxocyclohexane-1,3-dicarboxylate series ( $\beta$ -keto esters) are used as model structures for stereochemical studies and keto–enol transformations, as well as intermediate products in the synthesis of carbo- and heterocyclic systems [1–3]. Their reactions with nitrogen-centered nucleophiles have been well documented; depending on the nucleophile structure, these reactions lead to the formation of enamines, oximes, fused heterocycles, and heterocyclic spiro compounds whose structure was determined by spectral methods and X-ray analysis [4–7].

Reactions of such  $\beta$ -keto esters with thiosemicarbazides have been studied in the recent years [3, 8]; however, the available spectral data (IR, <sup>1</sup>H NMR) are clearly insufficient to unambiguously assign the struc-



Ia, IIa, IIb, Ar = Ph; Ib, IIc, Ar = 4-MeOC<sub>6</sub>H<sub>4</sub>; Ic, IId, Ar = 3-O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>; Id, IIe, Ar = 4-HO-3-MeOC<sub>6</sub>H<sub>3</sub>; Ie, IIf, Ar = 2-thienyl; X = S (a), O (b-f).



 $\begin{array}{c}
2.0 \\
2.5 \\
3.0 \\
3.5 \\
4.0 \\
60 \\
55 \\
50 \\
45 \\
40 \\
35 \\
35 \\
40 \\
55 \\
50 \\
45 \\
40 \\
35 \\
30 \\
25 \\
20 \\
5_{\rm C}, ppm
\end{array}$ 

Fig. 1. A fragment of the HSQC spectrum of diethyl 4-hydroxy-4-methyl-2-phenyl-6-thiosemicarbazonocyclohexane-1,3-dicarboxylate (IIa).

ture of the reaction products (thiosemicarbazone A, thiosemicarbazide B, or spirane C). Therefore, additional studies using <sup>13</sup>C NMR spectroscopy (including double resonance techniques) and X-ray analysis are necessary.

δ, ppm

1.0

1.5

In the present article we present new data on the structure of the reaction product of diethyl 4-hydroxy-4-methyl-6-oxo-2-phenylcyclohexane-1,3-dicarboxylate (**Ia**) with thiosemicarbazide, as well as on reactions of  $\beta$ -keto esters **I** with semicarbazide, which were not reported previously. Diethyl 4-hydroxy-4-methyl-6-thiosemicarbazono-2-phenylcyclohexane-1,3-dicarboxylate (**IIa**) was obtained in 79% yield by reaction of keto diester **Ia** with thiosemicarbazide according to the known procedure [8] (heating in boiling ethanol using 1.5 equiv of the nucleophile), and its structure was determined on the basis of the <sup>1</sup>H and <sup>13</sup>C NMR, HSQC, and X-ray diffraction data.

The <sup>1</sup>H NMR spectrum of **Ha** (DMSO- $d_6$ ) contained singlets from three NH protons at  $\delta$  6.71, 8.20, and 10.4 ppm and hydroxy proton at  $\delta$  4.61 ppm; methylene protons on C<sup>5</sup> resonated as doublets at  $\delta$  2.26 and 3.22 ppm with a coupling constant <sup>2</sup>J of 14 Hz, and the 2-H signal was a doublet at  $\delta$  3.05 ppm with a coupling constant J of 12 Hz; and the 1-H and 3-H protons together with OCH<sub>2</sub> protons in the ester moiety give rise to a multiplet at  $\delta$  3.61–3.75 ppm. The presence of a signal from 1-H rules out one of the possible structures, thiosemicarbazide **B**, but we still cannot distinguish between thiosemicarbazone **A** and spiro structure **C**. Valuable information was obtained from the <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>) which contained 10 signals from *sp*<sup>3</sup>-hybridized carbon atoms and one signal assignable to *sp*<sup>2</sup>-carbon atom (C<sup>6</sup>,  $\delta_{\rm C}$  151 ppm); this spectral pattern is consistent with thiosemicarbazone structure **A** and excludes isomeric structures **B** and **C** where 9 and 11 *sp*<sup>3</sup>-carbon atoms are present, respectively. Detailed signal assignment was made on the basis of the two-dimensional HSQC spectrum (Fig. 1). It contained the following cross peaks: 1-H/C<sup>1</sup> ( $\delta$  3.63/ $\delta_{\rm C}$  56.3 ppm), 2-H/C<sup>2</sup> (3.05/57.1), 3-H/C<sup>3</sup> (3.73/44.6), 5-H<sub>ax</sub>/C<sup>5</sup> (2.26/41.0),



**Fig. 2.** Structure of the molecule of diethyl 4-hydroxy-4methyl-2-phenyl-6-thiosemicarbazonocyclohexane-1,3-dicarboxylate (**IIa**) according to the X-ray diffraction data.

and  $5-H_{eq}/C^5$  (3.22/41.0). Thus the above data indicated that compound **IIa** in DMSO-*d*<sub>6</sub> has thiosemicarbazone structure **A**.

Thiosemicarbazone **IIa** crystallized to form welldefined crystals, and its molecular conformation was determined on the basis of the X-ray diffraction data (Fig. 2). The C<sup>5</sup> atom (for atom numbering, see Fig. 2) has  $sp^2$ -hybridization: the bond angle N<sup>1</sup>C<sup>5</sup>C<sup>4</sup> is 116°, and the C<sup>5</sup>–N<sup>1</sup> bond length is 1.28 Å. The thiosemicarbazone fragment is almost planar: the torsion angle C<sup>5</sup>N<sup>1</sup>N<sup>2</sup>C<sup>20</sup> is –178.2°. The cyclohexane ring adopts a distorted *chair* conformation, and the torsion angles C<sup>6</sup>C<sup>1</sup>C<sup>2</sup>C<sup>3</sup> (-61.6°) and C<sup>1</sup>C<sup>2</sup>C<sup>3</sup>C<sup>4</sup> (61.4°) approach those in analogous cyclohexane conformer.

All substituents in the cyclohexane ring, except for the hydroxy group, occupy equatorial positions. The hydrogen atoms on C<sup>2</sup> and C<sup>3</sup>, as well as on C<sup>3</sup> and C<sup>4</sup>, occupy axial positions and are arranged *trans* with respect to each others. This follows from the torsion angles between the corresponding ester fragment and phenyl substituent: C<sup>8</sup>C<sup>2</sup>C<sup>3</sup>C<sup>11</sup> –51.8°, C<sup>11</sup>C<sup>3</sup>C<sup>4</sup>C<sup>17</sup> 56.5°. Molecules **IIa** in crystal are characterized by weak intramolecular hydrogen bond O<sup>1</sup>–H<sup>1</sup>···O<sup>2</sup> (O<sup>2</sup>···H<sup>1</sup> 2.47, O<sup>1</sup>···O<sup>2</sup> 3.09 Å) and intermolecular hydrogen bonds N<sup>2</sup>–H<sup>2</sup>···O<sup>2'</sup> (O<sup>2'</sup>···H<sup>2</sup> 2.25, N<sup>2</sup>···O<sup>2'</sup> 3.08 Å) and N<sup>3</sup>–H<sup>3</sup>···O<sup>4'</sup> (O<sup>4'</sup>····H<sup>3</sup> 2.23, N<sup>3</sup>···O<sup>4'</sup> 3.03 Å). Intermolecular hydrogen bonds give rise to a three-dimensional network. Thus compound **IIa** has thiosemicarbazone structure **A** both in solution in DMSO-d<sub>6</sub> and in the crystalline state.

The reactions of  $\beta$ -keto esters **Ia–Ie** with semicarbazide were carried out following a modified procedure. Taking into account instability of semicarbazide as free base, it was used as hydrochloride, and the free base was generated by adding potassium hydroxide. As a result, we isolated the corresponding semicarbazones **IIb–IIe** in high yield (81–90%).

The spectral parameters of semicarbazones **IIb–IIe** were similar to those of thiosemicarbazone **IIa**. Their IR spectra contained absorption bands at 1703–1726 cm<sup>-1</sup>, belonging to stretching vibrations of unconjugated ester carbonyl groups, two bands due to primary amino group (3082–3206 cm<sup>-1</sup>), and a band corresponding to secondary amino group (3314–3364 cm<sup>-1</sup>). In the <sup>1</sup>H NMR spectra of compounds **IIb–IIe** in DMSO-*d*<sub>6</sub> we observed doublets from axial and equatorial qprotons on C<sup>5</sup> ( $\delta$  2.11–2.22 and 2.49–3.11 ppm, *J* = 14–15 Hz), signals from 2-H ( $\delta$  2.90–3.17 ppm), 1-H, and 3-H ( $\delta$  3.49–3.83 and 3.49–3.80 ppm), a singlet from the NH proton ( $\delta$  9.21–

9.25 ppm), a diffuse doublet from the NH<sub>2</sub> group ( $\delta$  5.53–6.28 ppm), and a singlet from the hydroxy proton ( $\delta$  4.34–4.55 ppm). Compound **IIb** displayed in the <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>) 10 signals from *sp*<sup>3</sup>-hybridized carbon atoms. The C<sup>6</sup> atom resonated at  $\delta_{\rm C}$  147 ppm. The HSQC spectrum of **IIb** (DMSO-*d*<sub>6</sub>) revealed the following cross peaks formed by directly coupled <sup>1</sup>H and <sup>13</sup>C nuclei: 1-H/C<sup>1</sup> ( $\delta$  3.64/ $\delta_{\rm C}$  56.1 ppm), 2-H/C<sup>2</sup> (3.00/57.2), 3-H/C<sup>3</sup> (3.64/44.8), 5-H<sub>*ax*</sub>/C<sup>5</sup> (2.16/40.0), 5-H<sub>*eq*</sub>/C<sup>5</sup> (3.07/40.0).

We can conclude that products of the reactions of  $\beta$ -keto diesters I with thiosemicarbazide and semicarbazide have (thio)semicarbazone structure.

## EXPERIMENTAL

The IR spectra were recorded in KBr on an FSM-1201 spectrometer with Fourier transform. The <sup>1</sup>H and <sup>13</sup>C NMR spectra, and two-dimensional HSQC spectra were recorded on Bruker AM-200 (200 MHz), Bruker MSL-400 (400 MHz), and Varian 400 spectrometers using DMSO- $d_6$  as solvent and tetramethylsilane as internal reference.

The X-ray diffraction data for a  $0.18 \times 0.14 \times 0.12$ mm single crystal of compound IIa were acquired at room temperature on a Bruker Nonius X8 Apex automatic diffractometer equipped with a two-dimensional CCD detector ( $\lambda Mo K_{\alpha}$  irradiation, graphite monochromator,  $\varphi$ -scanning through a step of 0.5°, Bragg angle range  $2.50^{\circ} \le \theta \le 27.50^{\circ}$ ). Total of 16745 reflection intensities were measured over one half of the reciprocal space sphere; among these, 5031 reflections were independent ( $R_{int} = 0.0195$ ). Monoclinic crystal system;  $C_{20}H_{27}N_3O_5S$ ; M 421.51; space group  $P2_1/n$ ; unit cell parameters: a = 9.5131(4), b = 16.8601(6), c =12.1904(4) Å;  $\beta = 101.748(1)^\circ$ , V = 2195.78(14) Å<sup>3</sup>; Z = 4;  $d_{calc} = 1.275$  g/cm<sup>3</sup>. No correction for absorption was introduced, taking into account small value of the linear absorption coefficient ( $\mu = 0.182 \text{ mm}^{-1}$ ).

The structure was solved by the direct method using SHELXS-97 software [9] and was refined by full-matrix least-squares procedure in anisotropic approximation for non-hydrogen atoms using SHELXL-97 software package [10]. All hydrogen atoms were localized by the Fourier difference syntheses, and their positions were refined with isotropic thermal parameters. The final divergence factors were R = 0.0450,  $wR_2 = 0.1195$  for 3857 reflections with  $F \ge 4\sigma(F)$  (with respect to  $F_{hkl}$ ; 371 varied parameters) and R = 0.0636,  $wR_2 = 0.1379$  for all independent reflections (5031); goodness of fit S = 1.058.

Diethyl 4-hydroxy-4-methyl-2-phenyl-6-thiosemicarbazonocyclohexane-1,3-dicarboxylate (IIa) was synthesized according to the procedure described in [8]. Yield 79%, colorless crystals, mp 160–161°C [8]. Single crystals suitable for X-ray analysis were obtained by slowly cooling a solution of **Ha** in ethanol. <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 0.78 t and 0.90 t (3H each,  $CH_2CH_3$ , J = 7.0 Hz), 1.23 s (3H, 4-CH<sub>3</sub>), 2.26 d (1H, 5-H<sub>ax</sub>, J = 14 Hz), 3.05 d (1H, 2-H, J = 12 Hz), 3.22 d  $(1H, 5-H_{eq}, J = 14 \text{ Hz}), 3.61-3.75 \text{ m} (4H, 1-H, 3-H)$ OCH<sub>2</sub>), 3.79–3.87 m (2H, OCH<sub>2</sub>), 4.61 s (1H, OH), 6.71 s (1H, NH), 7.12-7.26 m (5H, Ph), 8.20 s (1H, NH), 10.4 s (1H, NH). <sup>13</sup>C NMR spectrum,  $\delta_C$ , ppm: 13.6 and 13.8 (CH<sub>2</sub>CH<sub>3</sub>), 28.3 (4-CH<sub>3</sub>), 44.6 (C<sup>3</sup>), 55.6  $(C^{1})$ , 56.6  $(C^{2})$ , 59.2 and 59.5  $(OCH_{2})$ , 71.1  $(C^{4})$ ; 127, 128, 129, 140 (C<sub>arom</sub>); 151 (C<sup>6</sup>), 169 and 170 (C=O), 179 (C=S). HSQC spectrum,  $\delta$ , ppm/ $\delta_{C}$ , ppm: 0.78/14.0 (CH<sub>2</sub>CH<sub>3</sub>), 0.90/14.5 (CH<sub>2</sub>CH<sub>3</sub>), 1.23/28.6  $(4-CH_3)$ , 2.26/41.0  $(5-H_{ax}/C^5)$ , 3.05/57.1  $(2-H/C^2)$ , 3.22/41.0 (5-H<sub>ea</sub>/C<sup>5</sup>), 3.63/44.6 (3-H/C<sup>3</sup>), 3.73/56.3 $(H^{1}/C^{1}), 3.63/59.9 (OCH_{2}), 3.73/60.1 (OCH_{2});$ 7.13/127, 7.20/128, 7.23/129 (CH<sub>arom</sub>).

Diethyl 4-hydroxy-4-methyl-2-phenyl-6-semicarbazonocyclohexane-1,3-dicarboxylate (IIb). A solution of 0.97 g (8.7 mmol) of semicarbazide hydrochloride and 0.49 g (8.7 mmol) of potassium hydroxide in 2 ml of water was added to a solution of 2 g (5.8 mmol) of compound Ia in 50 ml of ethanol, and the mixture was heated for 1 h under reflux. After cooling, the precipitate was filtered off, washed with water, propan-2-ol, and diethyl ether, and dried under reduced pressure. Yield 1.97 g (85%), colorless crystals, mp 201-203°C (from EtOH). IR spectrum, v, cm<sup>-1</sup>: 3501 (OH); 3353 (NH); 3088, 3183 (NH<sub>2</sub>); 1713, 1719 (C=O, ester); 1676 (C=O, amide); 1560 (C=N). <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 0.83 t and 0.97 t (3H each,  $CH_2CH_3$ , J = 6.8 Hz), 1.25 s (3H, 4-CH<sub>3</sub>), 2.16 d (1H, 5-H<sub>ax</sub>, J = 14 Hz), 2.99–3.04 m (1H, 2-H), 3.10 d (1H, 5-H<sub>eq</sub>, J = 15 Hz), 3.62–3.68 m (2H, 1-H, 3-H), 3.75 q  $(2H, OCH_2, J = 6.8 Hz), 3.82-3.92 m (2H, OCH_2),$ 4.36 s (1H, OH), 5.53-6.19 br.d (NH<sub>2</sub>), 7.13-7.25 m (5H, Ph), 9.25 s (1H, NH). <sup>13</sup>C NMR spectrum,  $\delta_c$ , ppm: 13.7 and 14.0 (CH<sub>2</sub>CH<sub>3</sub>), 28.5 (4-CH<sub>3</sub>), 44.4  $(\hat{C}^3)$ , 55.8 ( $C^1$ ), 56.8 ( $C^2$ ), 59.3 and 59.5 (OCH<sub>2</sub>), 71.0 (C<sup>4</sup>); 127, 128, 129, 141 (C<sub>arom</sub>); 147 (C<sup>6</sup>), 157 (C=O, amide), 169 and 171 (C=O, ester). HSQC spectrum, δ, ppm/ $\delta_{\rm C}$ , ppm: 0.80/14.1 (CH<sub>2</sub>CH<sub>3</sub>), 0.93/14.5 (CH<sub>2</sub>CH<sub>3</sub>), 1.20/29.2 (4-CH<sub>3</sub>), 2.16/40.0 (5-H<sub>ax</sub>/C<sup>5</sup>), 3.00/57.2 (2-H/C<sup>2</sup>), 3.07/40.0 (5-H<sub>ea</sub>/C<sup>5</sup>), 3.64/44.8 $(3-H/C^3)$ , 3.64/56.1  $(1-H/C^1)$ , 3.81/59.4  $(OCH_2)$ , 3.82/60.0 (CH<sub>2</sub>); 7.16/127, 7.17/128, 7.20/129 (CH<sub>arom</sub>). Found, %: C 59.38; H 6.72; N 9.76. C<sub>20</sub>H<sub>27</sub>N<sub>3</sub>O<sub>6</sub>. Calculated, %: C59.25; H 6.71; N 10.36.

Compounds **IIc–IIf** were synthesized in a similar way.

**Diethyl 4-hydroxy-2-(4-methoxyphenyl)-4-methyl-6-semicarbazonocyclohexane-1,3-dicarboxylate (IIc).** Yield 90%, colorless crystals, mp 211–212°C (from EtOH). IR spectrum (KBr), v, cm<sup>-1</sup>: 3497 (OH); 3363 (NH); 3088, 3182 (NH<sub>2</sub>); 1715 (C=O, ester); 1672 (C=O, amide); 1561 (C=N). <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 0.87 t and 1.00 t (3H each, CH<sub>2</sub>CH<sub>3</sub>, *J* = 6.8 Hz), 1.23 s (3H, 4-CH<sub>3</sub>), 2.13 d (1H, 5-H<sub>ax</sub>, *J* = 14 Hz), 2.90–2.95 m (1H, 2-H), 3.08 d (1H, 5-H<sub>eq</sub>, *J* = 14 Hz), 3.51–3.58 m (2H, 1-H, 3-H), 3.69 s (3H, OCH<sub>3</sub>), 3.76 q (2H, OCH<sub>2</sub>, *J* = 7.2Hz), 3.82–3.90 m (2H, OCH<sub>2</sub>), 4.34 s (1H, OH), 5.66–6.22 br.d (NH<sub>2</sub>), 6.75 d and 7.15 d (2H each, C<sub>6</sub>H<sub>4</sub>), 9.22 s (1H, NH). Found, %: C 58.60; H 6.74; N 9.77. C<sub>21</sub>H<sub>29</sub>N<sub>3</sub>O<sub>7</sub>. Calculated, %: C 58.49; H 7.26; N 9.34.

**Diethyl 4-hydroxy-4-methyl-2-(3-nitrophenyl)-6semicarbazonocyclohexane-1,3-dicarboxylate (IId).** Yield 89%, colorless crystals, mp 207–210°C (from EtOH). IR spectrum, v, cm<sup>-1</sup>: 3477 (OH); 3314 (NH); 3150, 3206 (NH<sub>2</sub>); 1715–1730 (C=O); 153 (C=N). <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 0.85 t (3H, CH<sub>2</sub>CH<sub>3</sub>, *J* = 6.8 Hz), 0.98 t (3H, CH<sub>2</sub>CH<sub>3</sub>, *J* = 7.4 Hz), 1.27 s (3H, 4-CH<sub>3</sub>), 2.22 d (1H, 5-H<sub>ax</sub>, *J* = 14 Hz), 3.11 d (1H, 5-H<sub>eq</sub>, *J* = 14 Hz), 3.14–3.17 m (1H, 2-H), 3.75–3.83 m (3H, 1-H, OCH<sub>2</sub>), 3.85–3.93 m (3H, 3-H, OCH<sub>2</sub>), 4.55 s (1H, OH), 5.62–6.16 br.d (NH<sub>2</sub>); 7.55 t, 7.73 d, 8.04 d, and 8.20 s (4H, C<sub>6</sub>H<sub>4</sub>); 9.25 s (1H, NH). Found, %: C 53.84; H 5.72; N 12.32. C<sub>20</sub>H<sub>26</sub>N<sub>4</sub>O<sub>8</sub>. Calculated, %: C 55.05; H 5.69; N 12.84.

Diethyl 4-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-4-methyl-6-semicarbazonocyclohexane-1,3dicarboxylate (IIe). Yield 90%, colorless crystals, mp 186–187°C (from EtOH). IR spectrum, v,  $cm^{-1}$ : 3480 (OH); 3441 (OH<sub>arom</sub>); 3320 (NH); 3150, 3206 (NH<sub>2</sub>); 1726 (C=O), 1545 (C=N). <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 0.89 t and 1.02 t (3H each, CH<sub>2</sub>CH<sub>3</sub>, J = 6.8 Hz), 1.23 s (3H, 4-CH<sub>3</sub>), 2.11 d (1H, 5-H<sub>ax</sub>, J =15 Hz), 2.95 d (1H, 2-H, J = 10 Hz), 3.07 d (1H, 5-H<sub>eq</sub>, J = 15 Hz), 3.49–3.59 m (2H, 1-H, 3-H), 3.72 s (3H, OCH<sub>3</sub>), 3.79 q (2H, OCH<sub>2</sub>, J = 7.2 Hz), 3.86–3.92 m (2H, OCH<sub>2</sub>), 4.30 s (1H, OH), 5.58–6.28 br.d (NH<sub>2</sub>), 6.56-6.60 m and 6.78 s (3H, H<sub>arom</sub>), 8.60 s (1H, OH<sub>arom</sub>), 9.21 s (1H, NH). Found, %: C 55.41; H 6.58; N 9.61. C<sub>21</sub>H<sub>29</sub>N<sub>3</sub>O<sub>8</sub>. Calculated, %: C 55.88; H 6.43; N 9.31.

Diethyl 4-hydroxy-4-methyl-6-semicarbazono-2-(2-thienyl)cyclohexane-1,3-dicarboxylate (IIf). Yield 81%, colorless crystals, mp 194°C (from EtOH). IR spectrum, v, cm<sup>-1</sup>: 3502 (OH); 3352 (NH); 3082, 3182 (NH<sub>2</sub>); 1703, 1722 (C=O, ester); 1680 (C=O, amide); 1557 (C=N). <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 0.96 t and 1.06 t (3H each, CH<sub>2</sub>CH<sub>3</sub>, J = 6.8 Hz), 1.24 s (3H, 4-CH<sub>3</sub>), 2.15 d (1H, 5-H<sub>ax</sub>, J = 14 Hz), 2.95 d (1H, 2-H, J = 12Hz), 3.08 d (1H, 5-H<sub>eq</sub>, J = 15 Hz), 3.55 d (1H, 1-H, J = 12 Hz), 3.86 q (2H, OCH<sub>2</sub>, J = 7.2 Hz), 3.92–3.98 m (3H, 3-H, OCH<sub>2</sub>), 4.45 s (1H, OH), 5.58– 6.27 br.d (NH<sub>2</sub>), 6.86–6.88 m and 7.24 d (3H, C<sub>4</sub>H<sub>3</sub>S), 9.24 s (1H, NH). Found, %: C 52.55; H 6.08; N 10.22. C<sub>18</sub>H<sub>25</sub>N<sub>3</sub>O<sub>6</sub>S. Calculated, %: C 52.70; H 5.72; N 10.58.

## REFERENCES

- Kriven'ko, A.P. and Sorokin, V.V., Russ. J. Org. Chem., 1999, vol. 35, p. 1097.
- Smirnova, N.S., Plotnikov, O.V., Vinogradova, N.A., Sorokin, V.V., and Kriven'ko, A.P., *Khim.-Farm. Zh.*, 1995, vol. 1, p. 44.

- 3. Zorina, A.A., Cand. Sci. (Chem.) Dissertation, Perm, 2006.
- Sorokin, V.V., Grigor'ev, A.V., Ramazanov, A.K., and Kriven'ko, A.P., *Russ. J. Org. Chem.*, 2000, vol. 36, p. 781.
- Grigor'eva, E.A., Kriven'ko, A.P., Sorokin, V.V., Ramazanov, A.K., and Inozemtseva, O.A., *Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol.*, 2004, vol. 50, p. 131.
- Sorokin, V.V., Grigor'ev, A.V., Ramazanov, A.K., and Kriven'ko, A.P., *Khim. Geterotsikl. Soedin.*, 1999, p. 757.
- Sorokin, V.V., Suponitskii, K.Yu., and Kriven'ko, A.P., *Zh. Strukt. Khim.*, 2006, vol. 47, p. 598.
- Shchelochkova, O.A., Grigor'eva, E.A., and Kriven'ko, A.P., *Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol.*, 2006, vol. 49, p. 139.
- 9. Sheldrick, G.M., Acta Crystallogr., Sect. A, 1990, vol. 46, suppl., p. 467.
- Sheldrick, G.M., SHELX97. Programs for Crystal Structure Analysis (Release 97-2), Göttingen: Univ. of Göttingen, 1997.