3,3,9,9-Tetramethyl-1,5,7,11-tetraoxaspiro[5.5]undecane as a reagent for protection of carbonyl compounds

Mohammad Rahimizadeh*, Mehdi Bakavoli, Ali Shiri, Hossein Eshghi and Sattar Saberi

Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran

3,3,9,9-Tetramethyl-1,5,7,11-tetraoxaspiro[5.5]undecane is introduced as a new, stable and chemoselective reagent for the protection of aldehydes and ketones under mild reaction condition in high yield.

Keywords: aldehyde, ketone, protection, spiroorthocarbonate, transacetalisation

The protection of carbonyl groups as acetals or ketals and their subsequent regenerations is an important strategy in a multi-stage organic synthesis. Numerous attempts to improve the efficiency of this process have been investigated and a number of strategies, such as the use of protic acids, Lewis acids, solid acids and ionic liquids as the catalyst, with 1,2diols, 1,3-diols, 1,2-dithiols, 1,3-dithiols and orthoesters as the protecting reagents,2 have been reported. Considering the importance of this transformation, the search for a new catalyst and especially a new reagent is still needed. Although some of these methods are carried out under mild reaction conditions and have been widely used in organic synthesis, others suffer from drawbacks such as relatively harsh reaction conditions and long reaction times. The search for an alternative method that can overcome these drawbacks is desirable. Most attempts have been focused on finding new catalysts, rather than new protecting agents.3-6 In this paper, we wish to introduce 3,3,9,9-tetramethyl-1,5,7,11-tetraoxaspiro[5.5]undecane (2) as a promising, efficient and stable reagent for the protection of carbonyl compounds. There is only one report in the literature⁷ concerning the use of 1,4,6,9-tetraoxaspiro[4.4]nonane in acetalisation of carbonyl compounds. However, because of its instability and the tedious procedure for its preparation, its application has been limited.

The spiroorthocarbonate (2) used in this study was easily prepared in one step from the reaction of 2,2-dimethyl-1,3propandiol with dichlorodiphenoxymethane in the presence of pyridine in dry CH₂Cl₂ in 90% yield.⁸ The resulted spiroorthocarbonate (2) is stable enough (m.p. = 144-146°C, lit.8 = 144–145°C) to be stored at room temperature for a long time.

Initially, the reaction of benzaldehyde with the reagent (2) as a model was studied in different solvent systems. As shown in Table 1, aprotic solvents gave better results than the protic

Various carbonyl compounds have been used as substrates to react with the spiroorthocarbonate (2) in the presence of catalytic amount of p-toluenesulfonic acid (5 mol%) in CH₂Cl₂ to give the protected compounds 3a-s (Scheme 1).

The reaction proceeds at room temperature in relatively short time and in high yield (Table 2). Although the reactions were monitored by TLC, visual monitoring was also possible. When p-toluenesulfonic acid was added to a mixture of aldehyde or ketone (1a-s) and the spiroorthocarbonate (2), the colour of the mixture turns from colourless to slightly brownish liquid, indicating acetal or ketal formation. Further on increasing the reaction time, the reverse reaction did not occur. The results in Table 2 clearly demonstrate the efficiency of this method. Aliphatic aldehydes afforded their related 1,3-dioxane with moderate yields (entries 11 and 1m). This method is also useful for protection of cinnamaldehyde (entry 1k). Ketones can also be converted to the corresponding ketals but the reaction time was longer than aldehydes. This method is also applicable for protecting of relatively unreactive and steric-hindered ketones

Table 1 The solvent effect on yield and time of the typical protection of benzaldehyde

Entry	Solvent	Time/min	Yield/%	
1	CH ₂ Cl ₂	10	95	
2	CH ₃ CN	10	75	
3	CHČI ₃	60	80	
4	EtOH	No reaction		
5	MeOH	No reaction		
6	DMSO	30	56	

Scheme 1

such as benzophenone and diisopropylketone (entries 10 and 1p). These ketones failed to react with most of the previous reported reagents.9-12

Since the reaction of ketone is slower than aldehyde, this method can be used for the protection of an aldehyde in the presence of a ketone. An equimolar concentration of benzaldehyde, acetophenone and spiroorthocarbonate (2) yielded only the protected aldehyde.

On the other hand, water is not produced in this method unlike the other reported procedures which use alcohols. Thus, the method can be especially useful for protection water-sensitive aldehydes and ketones. (entry 1s)

In summary, the advantages of this method of protection of carbonyl compounds are chemoselectivity, mild reaction conditions, stability of the reagent, irreversibility and suitability for water-sensitive aldehydes and ketones and high yields.

Experimental

The ¹H NMR (100 MHz) spectra were recorded on a Bruker AC 100 spectrometer. Chemical shifts are reported in ppm downfield from TMS as internal standard. The mass spectra were obtained on a Varian Mat CH-7 at 70 eV. Elemental analysis was performed on a Thermo Finnigan Flash EA microanalyser.

General procedure for the preparation of spiroorthocarbonate (2): A solution of dichlorodiphenoxymethane (0.01 mol, 2.69 g) in dry CH₂Cl₂ (10 ml) was added dropwise in an ice-bath at 0-5 °C to a solution of neopentyl glycol (0.01 mol, 1.04 g) and pyridine (0.02 mol, 1.58 g) in dry CH₂Cl₂ (20 ml). After the addition was completed, the mixture was stirred for 2 h. Then, the solid was filtered off and the mother-liquor was washed with 5% NaOH solution and water, respectively. The organic phase was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The resulting solid was recrystallised from ethyl acetate. Yield = 90%, m.p. = 144- $146 \,^{\circ}\text{C}$, lit.⁸ = $144-145 \,^{\circ}\text{C}$.

General procedure for the protection of aldehydes and ketones (1a-s): A solution of anhydrous p-toluenesulfonic acid (5 mol%, 8.6 mg) in CH₂Cl₂ (1 ml) was added to a magnetically stirred solution of 3,3,9,9-tetramethyl-1,5,7,11-tetraoxaspiro[5.5]undecane

^{*} Correspondent. E-mail: rahimizh@yahoo.com

	Protection of different aldehyd				
Entry	Substrate	Time/min	Product	Yield/%ª	[Ref.]b
1a	ů,	10		95	[9]
1b	CI	5		96	[9]
1c	Br	5		95	[12]
1d	Me	10	Me	90	[12]
1e	ОМе	15	OMe	84	-
1f	MeO	15	MeO	79	-
1g	Meo	15		83	[9]
1h	O ₂ N H	5	MeO O ₂ N	94	[12]
1i	O ₂ N H	3	O ₂ N	97	[9]
1j		15		71	[12]
1k	C PH	10		85	[9]
11	ů,	15		82	[9]
1m	~~Å _H	15		85	[9]
1n	CH₃	30	CH ₃	88	[9]
10		45		69	-
1р		60	4,5	70	-
1q	\bigcirc	40		89	[9]
1 r	\bigcirc	30		91	[9]
1s	Br	45	Br	80	-

^aIsolated yield. ^bThe products are characterised from their spectra and comparison with authentic samples which were prepared according to lit.¹²

(1 mmol, 0.216 g) and aldehyde or ketone (1 mmol) in CH₂Cl₂ (2 ml). The solution was stirred and the progress of the reaction was monitored by TLC using petroleum ether: ethylacetate (8:2) as eluent. After the reaction was complete, the solvent was removed and the residue was purified by silica gel column chromatography using petroleum ether: ethylacetate (8:1). The first separated fraction was the protected aldehyde or ketone while the second separated fraction was the cyclic carbonate (4). The spectral data of the purified acetals or ketals were in accordance with those of the authentic samples which were prepared according to literature¹². The authentic cyclic carbonate (4) was prepared from the reaction of 2,2-dimethyl-1,3propandiol with diethyl carbonate according to literature¹³ and its spectroscopic data were the same as compound (4).

2-(2-methoxyphenyl)-5,5-dimethyl-1,3-dioxane (3e): 1HNMR (CDCl₃, ppm) δ 0.85 (s, 3H, -CH₃), 1.32 (s, 3H, -CH₃), 3.62 (ABA'B' q, 4H, -CH₂), 3.77 (s, 3H, -OCH₃), 5.33 (s, 1H, CH), 7.23 (m, 4H, Ar). IR (v, cm⁻¹) 3007, 2979, 1125. m/z 222 (M⁺). Anal. Calcd for C₁₃H₁₈O₃;

C, 70.24; H, 8.16; Found C, 70.18; H, 8.16%.

2-(3-methoxyphenyl)-5,5-dimethyl-1,3-dioxane (3f): 1H NMR (CDCl₃, ppm) δ 0.81 (s, 3H, -CH₃), 1.30 (s, 3H, -CH₃), 3.69 (ABA'B' q, 4H, -CH₂), 3.82 (s, 3H, -OCH₃), 5.37 (s, 1H, CH), 7.31 (m, 4H, Ar). IR (v, cm⁻¹) 3010, 2993, 1130. m/z 222 (M⁺). Anal. Calcd for C₁₃H₁₈O₃; C, 70.24; H, 8.16; Found C, 70.12; H, 8.01%.

5,5-dimethyl-2,2-diphenyl-1,3-dioxane (30): ¹H NMR (CDCl₃, ppm) δ 1.00 (s, 6H, -CH₃), 3.61 (s, 4H, -CH₂), 7.54 (m, 10H, Ar). IR (v, cm^{-1}) 3015, 2990, 1155. m/z 268 (M⁺). Anal. Calcd for $C_{18}H_{20}O_{2}$;

C, 80.56; H, 7.51; Found C, 80.46; H, 7.44%.

2,2-diisopropyl-5,5-dimethyl-1,3-dioxane (3p): 1H NMR (CDCl₃, ppm) δ 1.03 (s, 6H, -CH₃), 1.16 (d, 12H, -CH₃), 2.45 (m, 2H, -CH), 3.88 (s, 4H, -CH₂). IR (v, cm⁻¹) 2946, 1115. m/z 200 (M⁺). Anal. Calcd for C₁₂H₂₄O₂; C, 71.95; H, 12.08; Found C, 71.88; H, 11.97%.

2-(bromomethyl)-5,5-dimethyl-2-phenyl-1,3-dioxane (3s): 1H NMR (CDCl₃, ppm) δ 0.60 (s, 3H, -CH₃), 1.39 (s, 3H, -CH₃), 3.34 (s, 2H, -CH₂Br), 3.58 (ABA'B' q, 4H, -CH₂), 7.43 ppm (m, 5H, -Ar). IR (v, cm^{-1}) 3010, 2975, 1175, 920. m/z 284 (M^+) , 286 (M + 2). Anal. Calcd for C₁₃H₁₇BrO₂; C 54.75; H 6.01; Found C, 54.66; H, 5.92%.

5,5-dimethyl-1,3-dioxane-2-one (4): (Yield = 65-93%, m.p. = 104-106°C, lit. 13 107–109°C), 1H NMR (CDCl₃, ppm) δ 1.05 (s, 6H, -CH₃), 4.26 (s, 4H, -CH₂). IR (v, cm⁻¹) 2980, 1712, 1110. m/z 130 (M⁺). Anal. Calcd for C₆H₁₀O₃; C 55.37; H 7.74; Found C, 55.17; H, 7.58%.

Received 9 August 2008; accepted 13 October 2008 Paper 08/0104 doi: 10.3184/030823408X382126 Published online: 10 December 2008

References

- 1 T.W. Greene and P.G.M. Wuts, Protective groups in organic synthesis, 3rd edn, John Wiley & Sons, New York, 1991.
- G. Sartori, R. Ballini, F. Bigi, G. Bosica, R. Maggi and P. Righi, Chem. Rev., 2004, 104, 199.
- C. Singh and H. Malik, Org. Lett., 2005, 7, 5673.
- M. Barbasiewicz and M. Makosza, Org. Lett., 2006, 8, 3745.
- M. Matoba, T. Kajimoto, K. Nishide and M. Node, Chem. Pharm. Bull., 2006, 54, 141.
- P. Wang, H. Hu and Y. Wang, Org. Lett., 2007, 9, 1533.
- D.H.R. Barton, C.C. Dawes and P.D. Magnus, J. Chem. Soc., Chem. Commun., 1975, 432.
- P. Mues and H.J. Buysch, Synthesis, 1990, 249.
- B. Wang, Y. Gu, G. Song, T. Yang, L. Yang and J. Suo, J. Mol. Cat. A:
- Chem., 2005, 233, 121.
 B.K. Banik, M. Chapa, J. Marquez and M. Cardona, Tetrahedron Lett., 2005, 46, 2341.
- H. Adibi and H. Jafari, J. Fluorine Chem., 2007, 128, 679.
- H. Eshghi, M. Rahimizadeh and S. Saberi, Catal. Commun., 2008, 9,
- G. Schneider, M. Halmos, P. Meszaros and O. Kovacs, Monatsh. Chem., 1963, 94, 426.