

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 123 (2003) 287-290

www.elsevier.com/locate/jfluchem

Short communication

Synthesis and optical activity of aryl(N-trifluoromethylsulfonylimino)thiodifluoroacetic acids and their derivatives

Andrei V. Matsnev¹, Natalya V. Kondratenko, Lev M. Yagupolskii^{*}

Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanskaya St., 02094 Kiev, Ukraine

Received 7 April 2003; received in revised form 29 May 2003; accepted 4 June 2003

Abstract

Synthesis and ¹⁹F NMR studies of a new type of optically active sulfur(IV) compounds—aryl(*N*-trifluoromethylsulfonylimino)thiodifluoroacetic acids and their derivatives are described.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Synthesis; Aryl(N-trifluoromethylsulfonylimino)thiodifluoroacetic acids; Optical asymmetry; Trifluoromethyl group

1. Introduction

In our previous work we described preparation of a new type of optically active sulfur(IV) derivatives-organylsulfoxydifluoroacetic acids [1]. These compounds have a difluoromethylene group attached to the chiral center, and it was found that their optical purity could be easily controlled by monitoring of diastereotopic fluorine atoms by ¹⁹F NMR spectroscopy.

Exchange of the oxygen atom with the more electron withdrawing =NSO₂CF₃ group commonly leads to the formation of derivatives with unusual properties [2-4]. Therefore, it was interesting to study the possibility of preparing the optically active nitrogen analogs of sulfoxides containing trifluoromethylsulfonylimino group instead of oxygen atom.

Earlier we described the synthesis of (N-trifluoromethylsulfonyl)aryltrifluoromethylsulfimides [5]. However, these compounds have chiral sulfur attached to the trifluoromethyl group with magnetically equivalent fluorine atoms. Therefore, our aim in this work was to synthesize aryl(N-trifluoromethylsulfonylimino)thiodifluoroacetic acids and their amides as model compounds for investigation of optical

fax: +380-44-5732643.

asymmetry of α -fluoroalkyl substituted sulfinylimino derivatives.

The starting compounds were ethyl esters of aryldifluoroacetic acids, which were converted to their corresponding sulfimides using the dichloroimide of trifluoromethanesulfonic acid as an imination reagent, as it was shown before on aryltrifluoromethyl sulfides [5].

However, all attempts to convert the ethyl esters to the corresponding acids without the destruction of S=NSO₂CF₃ bond by hydrolysis in acidic or basic conditions were unsuccessful.

Therefore, the synthesis of analogous tert-butyl esters was carried out. However, we were not able to synthesize such type of compounds by the reaction of thiophenols with tertbutyl ester of iododifluoroacetic acid as the later one appears to be hydrolytically and thermally unstable compound.

Arylthiodifluoroacetates (1) were synthesized by the reaction of acidic chloroanhydrides [1] and tert-butyl alcohol in the presence of Et₃N as a base (Scheme 1).

Compounds **1a-f** were reacted with *N*,*N*-dichloroimide of trifluoromethanesulfonic acid [6] at mild conditions $(0-20 \ ^{\circ}C)$ with the formation of derivatives **2a-f** in high yields (Scheme 2). Esters **2a-f** given in NMR ¹⁹F spectra signals of AB-system that belongs to difluoromethylene group with magnetically non-equivalent fluorine atoms.

Thermolyses of esters 2a-f for 10-12 h at 85-97 °C gave acids 3a-f in high yields (65-70%) (Scheme 3).

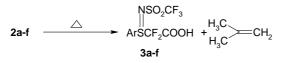
In order to investigate the optical asymmetry of synthesized sulfinylimines compounds 3c and e were reacted with

^{*} Corresponding author. Tel.: +380-44-5590349;

E-mail addresses: matsnev@bpci.kiev.ua (A.V. Matsnev), yurii@fluor-ukr.kiev.ua (L.M. Yagupolskii).

¹Co-corresponding author. Tel.: +380-44-5510669;

fax: +380-67-7581863.


$$\operatorname{ArSCF_2C} \xrightarrow{O} + t \operatorname{-BuOH} + \operatorname{Et_3N} \xrightarrow{\text{benzene}} \operatorname{ArSCF_2C} \xrightarrow{O} + \operatorname{Et_3NHCl}$$
$$1 \text{ a - f}$$

Scheme 1. Synthesis of tert-butyl esters of arylthiodifluoroacetic acids.

$$1 \text{ a-f} + CF_3SO_2NCl_2 \xrightarrow{\text{pentane, } 0-20 \text{ °C}} fn \xrightarrow{NSO_2CF_3} ArSCF_2COOBu-t + Cl_2}$$

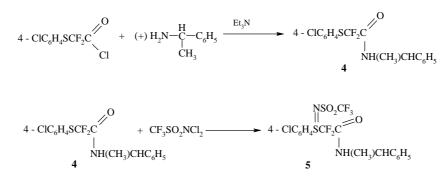
$$2 \text{ a-f}$$

Scheme 2. Preparation of *tert*-butyl esters of aryl(*N*-trifluoromethylsulfo-nylimino)thiodifluoroacetic acids (**2**).

Scheme 3. Preparation of aryl(*N*-trifluoromethylsulfonylimino)thiodifluoroacetic acids (3).

 $(R)(+)-\alpha$ -methylbenzylamine; the corresponding salts as a mixture of diastereomers were prepared. In the NMR ¹⁹F spectra of diastereomeric salts, the signals of difluor-omethylene groups are observed as a single AB-system, that does not permit to use this salts for isomers separation. Therefore, the synthesis of the $(R)(+)-\alpha$ -methylbenzylamide of aryl(*N*-trifluoromethylsulfonylimino)thiodifluoroacetic acid (**5**) by the imination reaction of the amide (**4**) was carried out; the amide (**4**) was prepared by the reaction of chloroanhydrides 4-chlorophenylthiodifluoroacetic acid and $(R)(+)-\alpha$ -methylbenzylamine (Scheme 4).

The NMR ¹⁹F investigations of amide (5) showed the formation of two diastereomers in a 1:1 proportion and which were presented on the spectra as two AB-systems with $J^1(FF)$ coupling constants of 198 and 201 Hz, respectively.


The diastereomers were separated by column chromatography using hexane–*iso*-propanol mixture as an eluent giving two individual compounds (6) and (7) with 98% purity (monitored by 19 F NMR spectroscopy).

In the current paper, the synthesis of aryl(*N*-trifluoromethylsulfonylimino)thiodifluoroacetic acids and their derivatives are described. It was shown that fluorine atoms of difluoromethylene groups in these compounds are magnetically non-equivalent and are presented as AB-system in NMR ¹⁹F spectra. The new type of optically active sulfur(IV) derivatives—*N*-trifluoromethylsulfonylimides with fluorinated group attached to α -position to the chiral center are described.

2. General procedures

2.1. Preparation of tert-butyl esters of arylthiodifluoroacetic acids (1)

Forty millimoles of thionyl chloride was added to 20 mmol of the corresponding arylthiodifluoroacetic acid at 0 °C. The reaction mixture was slowly warmed to room temperature and stirred at 60 °C till gas evolution had ceased. All volatile compounds were removed in vacuum, and the residue was dissolved in dry benzene. To this residue, 20 mmol of Et_3N and 40 mmol of dry *tert*-butanol were added at 10 °C. The reaction mixture was stirred for additional 12 h. The volatile compounds were evaporated away, and the residue was washed with water, extracted with dichloromethane, and dried over MgSO₄. Solvent was evaporated, and the crude product purified by column

Scheme 4. Preparation of (R)(+)- α -methylbenzylamide of aryl(N-trifluoromethylsulfonylimino)thiodifluoroacetic acid (5).

chromatography using hexane-benzene mixture as an eluent; mp (°C): **1a** (oil), **1b** (oil), **1c** (oil), **1d** (oil), **1e** (oil), **1f** (46).

2.1.1. (1a) C₆H₅SCF₂COOBu-t

NMR ¹H (CDCl₃/CCl₃F) δ : 1.42 (s, 9H), 6.25–6.47 (m, 5H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -79.80 (s, 2F).

2.1.2. (1b) 4-FC₆H₄SCF₂COOBu-t

NMR ¹H (CDCl₃/CCl₃F) δ : 1.36 (s, 9H), 6.92–7.54 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -80.5 (s, 2F), -104.73 (s, 1F).

2.1.3. (1c) 4-ClC₆H₄SCF₂COOBu-t

NMR ¹H (CDCl₃/CCl₃F) δ : 1.49 (s, 9H), 7.58–7.82 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -80.12 (s, 2F).

2.1.4. (1d) 4-BrC₆H₄SCF₂COOBu-t

NMR ¹H (CDCl₃/CCl₃F) δ : 1.51 (s, 9H), 7.71–7.85 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -81.1 (s, 2F).

2.1.5. (1e) 4-CH₃O C₆H₄SCF₂COOBu-t

NMR ¹H (CDCl₃/CCl₃F) δ : 1.54 (s, 9H), 2.98 (s, 3H), 7.56–7.67 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -81.2 (s, 2F).

2.1.6. (1f) $4 - O_2 N C_6 H_4 SCF_2 COOBu$ -t

NMR ¹H (CDCl₃/CCl₃F) δ : 1.48 (s, 9H), 7.78–8.23 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -80.92 (s, 2F).

2.2. Preparation of tert-butyl esters of aryl(N-trifluoromethylsulfonyl)thiodifluoroacetic acids (2)

To the solution of 5 mmol of *tert*-butyl ester of arylthiodifluoroacetic acid (1) 5.5 mmol of $CF_3SO_2NCl_2$ was added at 0 °C. The reaction mixture was slowly warmed to room temperature and stirred till gas evolution had ceased. After 3–4 h, the oily residue solidifies. The crude product was filtered off, washed with pentane (5 ml), H₂O (2 × 10 ml), and, finally, dried over potassium hydroxide. Yield: 95–98%. All the *tert*-butyl esters are solids, slowly decomposing at 60–90 °C with the formation of acids (**3**).

2.2.1. (2a) $C_6H_5S(NSO_2CF_3)CF_2COOBu-t$

NMR ¹H (CDCl₃/CCl₃F) δ : 1.45 (c, 9H), 7.23–7.45 (m, 5H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -76.9 (s, 3F), -94.1 (d, 2F, $J_{FF} = 208$ Hz), -103.6 (d, 2F, $J_{FF} = 208$ Hz). Analytically calculated for C₁₃H₁₄F₅NO₄S₂: C, 38.32; H, 3.44; S, 15.72. Found: C, 38.44; H, 3.45; S, 15.76.

2.2.2. (2b) 4-FC₆H₄S(NSO₂CF₃)CF₂COOBu-t

NMR ¹H (CDCl₃/CCl₃F) δ : 1.48 (s, 9H), 7.37–7.92 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -79.4 (s, 3F), -102.45 (s, 1F), -98.9 (d, 2F, $J_{FF} = 199$ Hz), -99.9 (d, 2F, $J_{FF} = 199$ Hz). Analytically calculated for Cl₃H₁₃-F₆NO₄S₂: C, 36.71; H, 3.06; S, 15.06. Found: C, 36.44; H, 2.89; S, 14.96.

2.2.3. (2c) 4-ClC₆H₄S(NSO₂CF₃)CF₂COOBu-t

NMR ¹H (CDCl₃/CCl₃F) δ : 1.60 (s, 9H), 7.66–7.85 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -78.4 (s, 3F), -96.4 (d, 2F, $J_{FF} = 207 \text{ Hz}$), -103.4 (d, 2F, $J_{FF} = 207 \text{ Hz}$). Analytically calculated for C₁₃H₁₃ClF₅NO₄S₂: C, 35.34; H 2.97; S 14.51. Found: C, 35.20; H, 3.04; S, 14.54.

2.2.4. (2d) 4-BrC₆H₄S(NSO₂CF₃)CF₂COOBu-t

NMR ¹H (CDCl₃/CCl₃F) δ : 1.62 (s, 9H), 7.73–7.85 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -77.7 (s, 3F), -97.1 (d, 2F, $J_{FF} = 206$ Hz), -102.7 (d, 2F, $J_{FF} = 206$ Hz). Analytically calculated for C₁₃H₁₃BrF₅NO₄S₂: C, 32.11; H, 2.89; S, 13.19. Found: C, 32.25; H, 2.90; S, 13.16.

2.2.5. (2e) 4-CH₃O $C_6H_4S(NSO_2CF_3)CF_2COOBu-t$

NMR ¹H (CDCl₃/CCl₃F) δ : 1.61 (s, 9H), 3.2 (s, 3H), 7.70–7.79 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -78.1 (s, 3F), -94.2 (d, 2F, $J_{FF} = 210$ Hz), -102.4 (d, 2F, $J_{FF} = 210$ Hz). Analytically calculated for C₁₄H₁₆F₅-NO₄S₂: C, 38.44; H, 3.69; S, 14.66. Found: C, 38.72; H, 3.77; S, 14.65.

2.2.6. (2f) $4 - O_2 N C_6 H_4 S(NSO_2 CF_3) CF_2 COOBu-t$

NMR ¹H (CDCl₃/CCl₃F) δ : 1.60 (s, 9H), 8.12–8.52 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -78.3 (s, 3F), -95.4 (d, 2F, $J_{FF} = 203$ Hz), -101.3 (d, 2F, $J_{FF} = 203$ Hz). Analytically calculated for C₁₃H₁₃F₅ N₂O₆S₂: C, 34.51; H, 2.89; S, 14.17. Found: C, 34.43; H, 2.90; S, 14.40.

2.3. Preparation of aryl(N-trifluoromethylsulfonyl)thiodifluoroacetic acids (3)

Ten millimoles of the corresponding *tert*-butyl ester (2) was stirred for 10 h at 85–97 °C. At room temperature 5 ml of H₂O was added. The water phase was extracted with dichloromethane $(2 \times 5 \text{ ml})$. The organic fractions were combined and washed with 5 ml of water. The combined water fractions were evaporated in vacuum and the residue washed with dry benzene $(2 \times 5 \text{ ml})$. Yields of the acids (3): 55–70%; mp (°C): **3a**, 120–121; **3b**, 127–128; **3c**, 130–132; **3d**, 134–135; **3e**, 79–80; **3f**, 154–155.

2.3.1. (3a) $C_6H_5S(NSO_2CF_3)CF_2COOH$

NMR ¹H (CDCl₃/CCl₃F) δ : 1.45 (s, 9H), 6.23–6.45 (m, 5H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -76.9 (s, 3F), -94.1 (d, 2F, $J_{FF} = 207$ Hz), -103.6 (d, 2F, $J_{FF} = 207$ Hz); IR: v_{as} (SO₂) = 1350, v_s (SO₂) = 1020, v (S=N) = 1450, v_{as} (C=O) = 1780, v_{as} (OH) = 1230, v (CF₃) = 1225. Analytically calculated for C₉H₆F₅NO₄S₂: C, 30.77; H, 1.71; S, 18.23. Found: C, 30.79; H, 2.20; S, 18.23.

2.3.2. (3b) 4- $FC_6H_4S(NSO_2CF_3)CF_2COOH$

NMR ¹H (CDCl₃/CCl₃F) δ : 7.39–7.95 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -79.4 (s, 3F), -98.9 (d, 2F, $J_{FF} = 208 \text{ Hz}$), -104.7 (d, 2F, $J_{FF} = 208 \text{ Hz}$), -100.7

(s, 1F). Analytically calculated for $C_{19}H_5F_6NO_4S_2$:C, 29.27; H, 1.36; S, 17.34. Found: C, 29.30; H, 1.42; 17.54.

2.3.3. (3c) 4-ClC₆H₄S(NSO₂CF₃)CF₂COOH

NMR ¹H (CDCl₃/CCl₃F) δ : 8.36–8.64 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -78.3 (s, 3F), -96.4 (d, 2F, $J_{FF} = 209$ Hz), -104.2 (d, 2F, $J_{FF} = 209$ Hz). Analytically calculated for C₉H₅ClF₅NO₄S₂: C, 28.02; H 1.30; S 16.60. Found: C, 28.25; H, 1.27; S, 16.51.

2.3.4. (3d) 4-BrC₆H₄S(NSO₂CF₃)CF₂COOH

NMR ¹H (CDCl₃/CCl₃F) δ : 8.11 (s, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -78.03 (s, 3F), -98.97 (d, 2F, $J_{FF} = 221$ Hz), -101.88 (d, 2F, $J_{FF} = 221$ Hz). Analytically calculated for C₉H₅BrF₅NO₄S₂: C, 25.12; H, 1.16; S, 14.88. Found: C, 24.94; H, 1.13; S, 14.91.

2.3.5. (3e) 4-CH₃O $C_6H_4S(NSO_2CF_3)CF_2COOH$

NMR ¹H (CDCl₃/CCl₃F) δ : 3.4 (s, 3H), 8.14–8.21 (m, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -78.0 (s, 3F), -98.2 (d, 2F, $J_{FF} = 212 \text{ Hz}$), -104.2 (d, 2F, $J_{FF} = 212 \text{ Hz}$); IR: v_{as} (SO₂) = 1350, v_{s} (SO₂) = 1020, v (S=N) = 1490, v_{as} (C=O) = 1740, v_{as} (OH) = 1190, v (CF₃) = 1140. Analytically calculated for C₁₀H₈F₅NO₄S₂: C, 31.50; H, 2.10; S, 16.80. Found: C, 31.72; H, 2.27; S, 16.65.

2.3.6. (3f) $4 - O_2 N C_6 H_4 S(NSO_2 CF_3) CF_2 COOH$

NMR ¹H (CDCl₃/CCl₃F) δ : 8.12–8.52 (s, 4H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -78.5 (s, 3F), -94.9 (d, 2F, $J_{FF} = 205 \text{ Hz}$), -100.7 (d, 2F, $J_{FF} = 205 \text{ Hz}$). IR: v_{as} (NO₂) = 1660, v_s (NO₂) = 1420, v_s (SO₂) = 1050, v_{as} (C=O) = 1770, v_{as} (OH) = 1250, v (CF₃) = 1225. Analytically calculated for C₉H₅F₅N₂O₆S₂: C, 27.27; H, 1.26; S, 16.16. Found: C, 27.30; H, 1.29; S, 16.40.

2.4. Preparation of aryl(N-trifluoromethylsulfonyl)thiodifluoroacetic acid amide (4)

Hundred millimoles of thionyl chloride was added to 50 mmol of 4-chlorophenylthiodifluoroacetic acid at room temperature. The reaction mixture was heated for 3 h at 60 °C (till gas evolution had ceased). All volatile compounds were removed under vacuum, and the residue was dissolved in benzene (10 ml). To residue in benzene 50 mmol of (R)(+)- α -methylbenzylamine and 50 mmol of Et₃N were added. The reaction mixture was stirred for additional 12 h. The precipitate was filtered off and washed with dry benzene (5 ml). The solvent was evaporated, and the crude product was crystallized from benzene–hexane mixture. Yield of (4):

87%; mp (°C): 135–136. NMR ¹H (CDCl₃) δ (ppm/CCl₃F): 1.40 (d, 3H), 4.98 (m, 1H), 6.2 (s, 2H), 7.11–7.58 (m, 9H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -83.2 (s, 2F). Analytically calculated for C₁₆H₁₄ClF₂NOS: C, 56.30; H, 4.10; N, 4.11. Found: C, 56.41; H, 4.20; N, 3.95.

2.5. Reaction of amide (4) with N,N-dichloroamide of trifluoromethanesulfonic acid

The method of preparation is analogous to (2). The oily product was obtained as a mixture of two diastereomers. The NMR ¹H (CDCl₃/CCl₃F) δ : NMR ¹H (CDCl₃) δ (ppm/CCl₃F): 1.54 (d, 3H), 4.24 (m, 1H), 6.45 (s, 1H), 7.41–7.68 (m, 9H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -78.5 (s, 3F), -99.1 (d, 2F, $J_{FF} = 198$ Hz), -104.1 (d, 2F, $J_{FF} = 198$ Hz); -78.6 (s, 3F), -99.2 (d, 2F, $J_{FF} = 201$ Hz), -102.2 (d, 2F, $J_{FF} = 201$ Hz).

2.6. Separation of sulfinimino derivative (5) into the individual diastereomers

The corresponding diastereomers were separated by column chromatography using hexane–*iso*-propanol (2%) mixture as an eluent and taking fractions of 3 ml; mp (°C): **6**, 94–96; **7**, 106–107. [α]_D¹⁸ (c 0.002, CHCl₃): **6**, +163; **7**, -94. **6**, NMR ¹H (CDCl₃) δ (ppm/CCl₃F): 1.53 (d, 3H), 4.21 (m, 1H), 6.44 (s, 1H), 7.41–7.68 (m, 9H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -78.5 (s, 3F), -99.1 (d, 2F, *J*_{FF} = 198 Hz), -104.1 (d, 2F, *J*_{FF} = 198 Hz); **7**, NMR ¹H (CDCl₃) δ (ppm/CCl₃F): 1.55 (d, 3H), 4.26 (m, 1H), 6.43 (s, 1H), 7.41–7.68 (m, 9H); NMR ¹⁹F (CDCl₃) δ (ppm/CCl₃F): -78.6 (s, 3F), -99.2 (d, 2F, *J*_{FF} = 201 Hz), -102.2 (d, 2F, *J*_{FF} = 201 Hz). Analytically calculated for C₁₇H₁₄ClF₅N₂O₃S₂: C, 41.80; H, 2.87; N, 5.74. Found: C, 41.96; H, 2.97; N, 5.86.

References

- A.V. Matsnev, N.V. Kondratenko, Y.L. Yagupolskii, L.M. Yagupolskii, Tetrahedron Lett. 43 (2002) 2949–2952.
- [2] L.M. Yagupolskii, V.N. Petrik, Y.A. Slominskii, Tetrahedron Lett. 43 (2002) 3957–3959.
- [3] L.M. Yagupolskii, Aromatic and Heterocyclic Compounds with Fluorine-Containing Substituent, Naukova Dumka, Kiev, 1988 (in Russian).
- [4] R.Y. Garlyauskayte, A.V. Bezdudny, C. Michot, M. Armand, Y.L. Yagupolskii, L.M. Yagupolskii, Chem. Soc., Perkin Trans. 1 (2002) 1887–1889.
- [5] N.V. Kondratenko, R.Y. Gavrilova, L.M. Yagupolskii, Zh. Org. Khim. 24 (1988) 456–457.
- [6] O.A. Radchenko, V.P. Nazaretyan, L.M. Yagupolskii, Zh. Org. Khim. 46 (1976) 565–568.