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ABSTRACT

A facile, one-pot reaction cascade condenses 1,1,1-trichloroalkanes with r,�-unsaturated ketones to unexpectedly furnish moderate to good
yields of (E)-2-alkylidenecyclobutanols.

In recent years, our laboratories1 and others2 have introduced
an assortment of organochromium reagents and exploited
their unique physical/chemical properties for access to a wide
range of natural products and high value targets.3 In
continuation of these studies, we sought to extend the utility

of select chromium reagents via in situ transmetalation and
subsequent reaction with electrophiles. In one such example,
chromium carbenoid 2 was generated from 1,1,1-trichloro-
alkane 1 using excess anhydrous CrCl2, except both copper
cyanide and an R,�-unsaturated ketone 3 were present. We
anticipated the (E)-vinylchromium(III) intermediate 2 would
undergo transmetalation and subsequent 1,4-conjugate ad-
dition with 3. Unexpectedly, however, (E)-2-alkylidenecy-
clobutanol 4 was isolated as the major product in moderate
to good yields (Scheme 1).

Alkylidenecyclobutanols, and the cyclobutanols which are
readily derived from them, appear as substructures4 in many
architecturally interesting and/or bioactive natural products.5

They also display unique reaction manifolds that make them
useful as synthetic intermediates.6 Access to these strained
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Scheme 1. Synthesis of (E)-2-Alkylidenecyclobutanols
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ring systems is generally restricted to [2 + 2]-cycloadditions,7

ring expansions, or contractions of the corresponding ho-
mologues,8 Wittig9 and, to a lesser extent, via intramolecular
alkylations.10

To better understand the implications of this unusual
cascade reaction, we investigated its scope and possible
mechanism and report our findings herein. The reaction
parameters were systematically optimized using 1,1,1-
trichloroalkane 5, R,�-unsaturated ketone 6, CrCl2 (6 equiv),
and CuCN (1.2 equiv) as the benchmark system. Yields of
7 were best in THF (Table 1, entry 1), somewhat lower in

DME, CH3CN, and dioxane, and poor in DMF, HMPA,
DMSO, and EtOAc. The reaction was also highly dependent
upon the copper salt. CuCN was superior to all others for
producing alkylidenecyclobutanols; little, if any, 7 or con-
jugate addition was observed with CuI, CuBr, CuCl, PhSCu,
or CuTc, whereas CuOTf gave a 35% yield of the 1,4-adduct
28 but no alkylidenecyclobutanol (Scheme 2). Adjuvants,

e.g., NiCl2, BF3·Et2O, and KCN, were likewise unhelpful as
were higher (70 °C) or lower (4 °C) reaction temperatures.
The amount of CrCl2 could be reduced from 6 equiv to 1
equiv using Mn(0) powder as a regeneration agent,11

although the yield of 7 declined to 24%. Substoichiometric
amounts of CuCN also led to significantly lower yields.

Both allylic 8 (entries 2 and 3) and benzylic 12 (entry 4)
trichloroalkanes behaved analogously to 5 and afforded
adducts 9, 11, and 13, respectively, from ketones 6 and 10.12

Importantly, the cascade was compatible with silyl ether 14
(entries 5-8), electron-rich napthalene 16 (entry 6), and even
the aryl bromide 18 (entry 7). X-ray analysis (see Supporting
Information) of adduct 17, following desilylation, confirmed
its identity and the E-olefinic geometry. The latter was a key
insight that must be accommodated by any proposed annu-
lation process (vide infra).
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Table 1. Synthesis of (E)-2-Alkylidenecyclobutanolsa

a See ref 12 for general procedure.

Scheme 2. 1,4-Conjugate Adduct
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stituted R,�-unsaturated ketone 22 proceeded smoothly to
furnish 23 as a 1:1.8 diastereomeric mixture (entry 9), and
notably, the polymerization-prone exocyclic ketone 24 was
transformed into fused bicyclic 25 (entry 10). In contrast,
analogous efforts using the �-substituted analogue 26 (R )
Me, Ph) failed to give any 27 (entry 11).

While the mechanistic details remain undefined at present,
we speculate that one-electron reduction of enone 314 to enol
radical 29 occurs concurrently with the production of
R-halovinylidene chromium carbenoid 2 (Scheme 3).1j

Subsequent copper-mediated Kharasch-type addition15 and
loss of copper chloride from the resultant adduct 30 deliver
(E)-vinylchromium 31. Enol quench, perhaps by the previ-

ously identified internal proton return process1j,16 or adventi-
tious water, gives 32 from which 4 is obtained by intramo-
lecular ketone vinylation.17

In summary, we have demonstrated a convergent, (E)-
selective synthesis of 2-alkylidenecyclobutanols based upon
mechanistically unique, synergistic chemistry not achievable
using either CrCl2 or CuCN alone.
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Scheme 3. Proposed Mechanism
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