Capped Subporphyrins

Yasuhide Inokuma and Atsuhiro Osuka*^[a]

Abstract: Capped subporphyrins 12-16 with C_3 molecular symmetry were synthesized from 5,10,15-tri(3-aminophenyl)-substituted subporphyrin 8 and tripodal trialdehydes 2-6 by Lindsey's entropically favored macrocyclization. Xray diffraction analysis has revealed that the concave surface of the subporphyrin core is selectively capped with a 1,3,5-substituted benzene moiety. Capped subporphyrins 15 and 16, with a five-atom arm and thus large inner cavities, exhibit solvent incorporation behavior in their crystal structures. On the other hand, subporphyrins 12 and 13 exhibit tight structures, in which the cap and subporphyrin core are found much closer with average interplanar separations of 3.56 and 3.15 Å, respectively. Variable-temperature ¹H NMR measurements revealed that subporphyrins 12, 13, and 16 undergo spiral interconversions between P and M forms depending on the arm length and the electronic nature of the cap.

Keywords: cage compounds • porphyrinoids • spiral interconversions • substituent effects Of these, subporphyrin **13**, with a 1,3,5tri(alkoxycarbonyl)benzene cap strapped by three-atom arms, exhibits a considerably slow spiral interconversion with a large enthalpy change of ΔH^{\pm} = 76.4 kJ mol⁻¹ and a characteristic redshift of the Soret-like band and enhancement of the Q(0,0) band. These properties are ascribed to considerable through-space charge-transfer interactions between the electron-deficient cap and the subporphyrin core and the multiple CH- π interactions.

Introduction

The chemistry of subporphyrin, which is a genuine contracted porphyrin with a 14π -aromatic macrocycle, began with our discovery of tribenzosubporphines in 2006.^[1] The following years have witnessed the exploration of an increasing number of subporphyrins and their related compounds with rich optical, electrochemical, and structural properties.^[2-9] Among them, *meso*-aryl-substituted subporphyrins^[4] have been found to be particularly interesting in light of their highly tunable optical and electrochemical properties by large *meso*-aryl substituents. These features mainly arise from free rotation of the 2,6-unsubstituted aryl substituents at *meso* positions, which allow effective conjugative interactions between the *meso*-aryl groups and the subporphyrin. Similarly, various functional groups have been introduced to

 [a] Dr. Y. Inokuma, Prof. Dr. A. Osuka Department of Chemistry, Graduate School of Science Kyoto University, Sakyo-ku, Kyoto 6068502 (Japan) Fax: (+81)75-753-3970 E-mail: osuka@kuchem.kyoto-u.ac.jp

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.200900879.

the meso positions of subporphyrin to tune the electronic properties of the subporphyrins.^[4-7] For example, elongation of the π -electronic network by substitution of oligo(*p*-phenyleneethynylene) arms resulted in the intensification and redshift of the Soret-like band and the enhancements in both the fluorescence quantum yield and the two-photon absorption (TPA) cross section.^[5] Substitution with the 4-(N,Ndialkylamino)phenyl group caused strong intramolecular charge-transfer interactions, which gave substantial perturbation on the absorption and fluorescence spectra of subporphyrin.^[6] Considerable through-bond interactions between two subporphyrin cores were observed for the 4,4'-biphenylene-bridged dimer in the ground state, but not for the 3,3'homologue.^[7] On the other hand, chemical modulations at the β positions provide large electronic impacts on the subporphyrin macrocycle. Hence, hydrogenation of one $\beta=\beta$ double bond of subporphyrin yielded meso-aryl subchlorin, which displays a blueshifted and broadened Soret-like band and redshifted and intensified Q-like bands.^[8] A hexabromination-Stille coupling strategy provided hexaethynylated subporphyrins in high yields, which exhibited large TPA cross sections up to 2800 GM.^[9] Importantly, most of these attractive properties are very difficult or almost impossible for porphyrins in which peripheral substituents are arranged in an almost orthogonal manner.

Chem. Eur. J. 2009, 15, 6863-6876

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- 6863

Subporphyrins adopt a bowl-shaped triangular structure, which is common for subphthalocyanines.^[10] Recently, such bowl-shaped π -conjugated systems have attracted increasing attention in light of curved aromatic systems, unique recognition abilities, and partial structural components of fullerenes and carbon nanotubes.^[11] Whereas the representative bowl-shaped aromatic hydrocarbon systems, such as sumanenes and corranulenes, are known to undergo bowl-to-bowl flipping,^[12] none such dynamic motions have been observed for subporphyrins or subphthalocyanines, which suggests their structural robustness. We thought that this structural feature of subporphyrins should be advantageous for fabrication at the concave face, whereas such a face-selective fabrication has been quite rare both for subporphyrins and subphthalocyanines. Rare examples include 1) a chirally discriminating assembly of subphthalocyanines, which was reported to provide a dimeric cage with linkages at the concave face^[13] and 2) a boron axial-ligand exchange reaction used to construct complementary face-to-face subporphyrin dimers with linkages at the convex face.^[14]

Herein, we report the synthesis and characterization of capped subporphyrins in which a 1,3,5-trisubstituted benzene cap is connected to a subporphyrin core at the concave side. Whereas there are many examples of capped porphyrins in the literature,^[14-16] there are no such precedents for subporphyrin. It can be expected for capped subporphyrins that 1) intramolecular through-space π - π interactions between the concave face and the 1,3,5-trisubstituted cap is possible, 2) a guest molecule of a suitable size and shape can be encapsulated into a cavity created by the subporphyrin core and cap, and 3) such a subporphyrin cap restricts free rotation of the *meso*-aryl substituents, hence influencing the electronic interaction of the subporphyrin core with the

meso-aryl substituents. During this work, we confirmed all of these expectations and additionally found that spiral interconversions of capped subporphyrins depend upon the length of bridges that connect the subporphyrin core and cap and upon the electronic nature of the cap.

Results and Discussion

Synthesis: There are two synthetic approaches to capped porphyrins: One is the direct synthesis of a porphyrin macrocycle from pyrrole and a covalently linked tetraaldehyde.^[15] The other is a stepwise synthesis that consists of the initial porphyrin synthesis and subsequent capping with quadruple

сно сно сно сно OHO OH онс 2 1 3 arm length: 1 atom 2 atoms 3 atoms сно CHO OHC онс 4 5 6 arm length: 4 atoms 5 atoms 5 atoms

Scheme 1. Structures of tripodal aryl aldehydes 1–6. The arm lengths are also indicated.

linkage.^[16,17] First, we attempted the direct method for the synthesis of capped subporphyrins. To preserve C_3 molecular symmetry of the subporphyrin core, 1,3,5-trisubstituted benzene moiety was employed as a cap model. Scheme 1 shows tripodal aryl aldehydes **1–6** used for the direct synthesis. The arm length is defined by the number of atoms between the central benzene moiety and the peripheral benzaldehyde unit; this is also indicated in Scheme 1.

An equimolar mixture of pyridine-tri-N-pyrrolylborane (7) and a tripodal aryl aldehyde was treated with trifluoroacetic acid (TFA) in 1,2-dichlorobenzene at 0°C. After the acid catalyst was quenched with pyridine, the solution was heated at reflux under aerobic conditions. However, this standard reaction for meso-aryl-substituted subporphyrins did not yield capped subporphyrin. Therefore, we examined the stepwise approach. One of the most efficient stepwise synthetic protocols of capped porphyrin was developed by Lindsey and Mauzerall, who employed entropically controlled macrocyclization between the $\alpha, \alpha, \alpha, \alpha$ -atropisomer of meso-tetrakis(2-aminophenyl)porphyrin and a tetraaldehyde.^[17] As such, the stereocontrolled $\alpha, \alpha, \alpha, \alpha$ -atropisomer was required for the synthesis of capped porphyrins because of restricted rotation of the meso-aryl substituents in porphyrins. It was thought, however, that such a care would not be obligatory in the application of this strategy to subporphyrins owing to free rotation of the meso-aryl substituents. We thus examined a similar macrocyclization reaction for meso-tri(3-aminophenyl)-substituted subporphyrin 8 and tripodal aldehydes 1-6.

Subporphyrin 8 was first synthesized from *meso*-tri(3-nitrophenyl)-substituted subporphyrin 9 by means of an $SnCl_2 \cdot 2H_2O$ reduction in a mixture of EtOH and hydrochloric acid. Although the reduction of three nitro groups of 9

6864

proceeded quantitatively, the very poor yield of **9** (less than 1%) posed a serious obstacle for further investigation. As an alternative route, *meso*-tris(3-bromophenyl)-substituted subporphyrin **10** was prepared from **7** and 3-bromobenzalde-hyde in 4.9% yield under the standard conditions.^[4c] Subporphyrin **10** was coupled with benzamide in the presence of $[Pd_2(dba)_3]$, Cs_2CO_3 , and Xantphos under the reaction conditions reported by Yin and Buchwald to furnish *meso*-tris(3-benzamidophenyl)-substituted subporphyrin **11** in 82% yield.^[18] The amido groups in **11** were readily hydrolyzed with NaOH in a mixture of EtOH/THF/water to give subporphyrin **8** in 92% yield. Hence, the overall yield of **8** from **7** was 3.7% yield over 3 steps (Scheme 2). The ¹H NMR spectrum of subporphyrin **8** in CDCl₃ exhibits a

sharp singlet at $\delta = 8.13$ ppm due to the six β protons and a single set of signals due to the 3-aminophenyl groups (a singlet at $\delta = 7.41$ ppm, two doublets at $\delta = 7.40$ and 6.92 ppm, and a triplet at $\delta = 7.45$ ppm), indicating free rotation of *meso*-3-aminophenyl substituents in solution.

The stepwise capping reaction was first examined for **8** and trialdehyde **1**. These two components were condensed under various reaction conditions in the presence of an acid catalyst. However, the ¹H NMR spectrum of the reaction products showed complicated signal patterns, and no evidence was obtained for the expected capped subporphyrin. Although two intense cation peaks at m/z 911.3 and 929.1, which can be assigned to borenium cations of the doubly linked dyad [**8**+**1**-OMe-2H₂O]⁺ and the singly linked

dvad $[8+1-OMe-H_2O]^+$ $(C_{63}H_{44}BN_6O = 911.37$ and $C_{63}H_{46}BN_6O_2 = 929.38$), respectively, were observed in the MALDI-TOF mass spectrum of the reaction mixture, signals due to the triply linked Schiffbase cage could not be recorded. These results indicated that the arm length of 1 was too short to link three meso-aryl substituents of 8. Next, the capping reaction of 8 and 2 was examined. Compound 2 (1 equiv) in a small amount of CH₂Cl₂ was added to a solution of 8 in a mixed solvent of CH₂Cl₂/ *i*PrOH (v/v=4:1) in the presence of TFA (5 equiv) and the solution was stirred at room temperature for 1 day. MALDI-TOF mass analysis of the reaction solution exhibited an intense cation signal at m/z 941.5, which corresponded to [8+ $2 - OMe - 3H_2O^+$ (i.e., [12-**Schiff**-OR]⁺; $C_{63}H_{42}BN_6O_3 =$ 941.34). Without purification, this Schiff base cage was reduced with NaBH₃CN to give capped subporphyrin 12 in 80% yield (Scheme 3). Under the similar reaction conditions, tripodal aldehydes 3, 4, 5, and 6 also afforded corresponding capped subporphyrins 13, 14, 15, and 16 in 59, 58, 85, and 70% yields, respectively (Scheme 4).

It is noteworthy that capping reactions at high concentrations of **8** and tripodal aldehydes ($\geq 0.5 \text{ mM}$) resulted in the for-

Chem. Eur. J. 2009, 15, 6863-6876

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Scheme 3. Synthesis of capped subporphyrin 12.

mation of orange precipitates of polymeric materials and the high yields of capped subporphyrins **12–16** were accomplished only in homogeneous solutions under dilute conditions ($60 \mu M$) without isolation of the Schiff bases. High-resolution electrospray ionization (HR-ESI) mass spectra of capped subporphyrins **12–16** exhibited intense borenium cation signals at m/z 947.3884, 1031.3736, 1037.4205, 1079.4680, and 1121.4045, which correspond with the calculated values of $[M-OMe]^+=947.3886$, 1031.3733, 1037.4203, 1079.4673, and 1121.4051, respectively.

X-ray crystallographic analysis: The solid-state structures were unambiguously determined by X-ray diffraction analysis for capped subporphyrins **12**, **13**, **15**, and **16**. The bowl-shaped subporphyrin core of **12** was capped with the 1,3,5-triphenoxymethylbenzene moiety at the concave side. The average distance from the mean plane of the aryl ring of the cap to the β carbon atom of the subporphyrin is 3.56 Å.

Three *meso*-aryl rings of the subporphyrin tilt in the same direction, thus forming a helical structure. In the unit cell, two pairs of *P* and *M* spiral forms were found to construct a racemic crystal. Interestingly, the dihedral angles between the *meso*-aryl ring and the mean plane defined by six β carbon atoms are 52.1, 62.8, and 68.6°, which are distinctly larger than those of 2,6-unsubstituted aryl rings on subporphyrins, which are generally found to be in the range of 40–55°. This is explained in terms of the capping effect, which does not allow free rotation of the *meso*-aryl substituents, but rather forces them to adopt larger dihedral angles (Figure 1).

A single crystal of **13** suitable for X-ray analysis was grown from a mixture of DMSO/MeOH. The crystal structure of **13** also shows a spiral conformation similar to **12**. The tilting angles of the *meso*-aryl substituents are observed in the range of 43.1–54.6° with respect to the six β carbon mean plane. The average distance between the β carbon

Scheme 4. Synthesis of capped subporphyrins 13-16.

mean plane and the aryl ring in the cap is only 3.15 Å, which is the shortest in the series, although the arm length of 13 (3 atoms) is longer than 12 (2 atoms). Such a remarkably short interplanar distance suggests considerable throughspace $\pi - \pi$ interactions between the subporphyrin core and the cap. Although there are many examples of convex-toplane- or concave-to-convex-type π - π interactions in the solid state seen in fullerene-porphyrin cocrystals,^[19] and belt- and bowl-shaped hydrocarbons,^[20] such concave-toplane-type π - π interactions are rather rare.^[21] This capped subporphyrin model might be a good platform to evaluate suitable interplanar separation or orientation of π -(concave)– π (plane) interactions. Furthermore, in the helical structure of 13, each of the three 1,2-phenylene rings in the bridging arms is located close to a β-C-H position. The distances from the mean plane of the 1,2-phenylene ring to the nearest β hydrogen atom are in the range of 2.59–2.75 Å and those to the nearest β carbon atom is in the range of 3.41–3.52 Å, indicating intramolecular CH $-\pi$ interactions.

Capped subporphyrin **15** was recrystallized from a mixture of CHCl₃/MeOH to afford single crystals of good quality (Figure 2A). The crystal structure of **15** also shows a concave-capped spiral structure. Two chloroform molecules used as the solvent were found close to **15** in the crystal lattice. Interestingly, one is placed at the center of the inner cavity of **15**, whereas the other is located between two *meso*-appended arm units. The chloroform molecule inside the cavity is orientationally disordered and the major orientation (62% occupancy) is shown in Figure 2A. In the other form, the chloroform molecule is arranged upside down with an occupancy of 38%. Owing to the long arm (5 atoms) and the chloroform clathration, the inner cavity of **15**⊃CHCl₃ is enlarged to be 6.7 Å in height.

A cubic crystal of **16** was obtained from a mixed solvent system of CH_2Cl_2 /mesitylene/MeOH (Figure 2B). In the crystal structure, the axial methoxo ligand of **16** was hydrolyzed into the hydroxo form (i.e., **16-OH**) by adventitious water. Capped subporphyrin **16-OH** also exhibits a concave-

A EUROPEAN JOURNAL

Figure 1. X-ray crystal structures of A) 12 and B) 13.

capped, helical structure with pseudo- C_3 molecular symmetry^[22] along the B–O bond axis. In this crystal structure, one mesitylene molecule is precisely packed in the cavity of 16-OH, and three mean planes of the aryl ring of the cap, mesitylene, and six β carbon atoms of the subporphyrin are arranged in a parallel manner. The interplanar distances are 3.46 Å between the aryl ring of the cap and mesitylene and 3.16 Å between the six β carbon mean plane and mesitylene, suggesting favorable π - π stacking between the three aromatic segments. Interestingly, the interplanar distance between the mesitylene and the subporphyrin core in 16-OH is quite similar to that between the aryl ring of the cap and the subporphyrin core in 13, which might suggest a suitable interplanar separation of around 3.15 Å for the favorable π -(concave)– π (plane) stacking of capped subporphyrins. The inner cavity height of **16-OH** mesitylene is thus 6.6 Å, which is similar to that of 15 \supset CHCl₃. The dihedral angles of the meso-aryl rings of 15 CHCl₃ are in the range of 45.4-60.2° and those of 16-OH > mesitylene are 51.3° each with respect to the six β carbon mean plane, which are slightly smaller than those of 12. To evaluate the affinity of mesitylene for the cavity of capped subporphyrin 16 in solution, a ¹H NMR titration experiment was carried out by the addition of excess amounts of mesitylene in CDCl₃ at room temperature. However, the proton signals due to 16 did not undergo any specific shift, even in the presence of a large excess amount of mesitylene. We also attempted ¹H NMR, UV/Vis absorption, and fluorescence titration analyses with 15 and 16 in the presence of C_3 symmetric guests, for example, 1,3,5-trimethoxybenzene, 1,3,5-tribromobenzene, chloroform, and triphenylphosphane, but, none of them exhibited a particular affinity towards the cavities. These results suggested that the affinity and selectivity of these guest molecules toward the inner cavities of 15 and 16 in solution were poor. Nevertheless, the solid-state structures of 15⊃CHCl₃ and 16-OH⊃mesitylene indeed demonstrated the encapsulating ability of capped subporphyrins, encouraging their use as a host for a guest with C_3 -molecular symmetry. In addition, we have recently disclosed characteristic structural changes for the meso-[4-(N,Ndibenzylaminophenyl)]-substituted subporphyrins, in which

slight but distinctive benzoquinone-type bond length alternations have been observed for *meso*-attached benzene rings.^[6] However, such remarkable bond length discriminations are not confirmed for capped subporphyrins **12**, **13**, **15** \supset CHCl₃, and **16-OH** \supset mesitylene, which suggests little influence of 3-aminophenyl groups on the electronic properties of the subporphyrin core in the ground state.

¹H NMR spectroscopy: The ¹H NMR spectrum of **12** shows a C_3 -symmetric signal pattern featuring two singlets at $\delta =$ 5.77 and 7.52 ppm due to the aryl protons of the cap (H^a, designated in Scheme 3) and the β -pyrrolic protons at room temperature, both of which are significantly high-field shifted compared with those of the fragment molecules **2** and **8**. On the basis of the crystal structure, the former high-field shift can be ascribed to the diatropic ring-current effect of the 14 π -aromatic subporphyrin core and the latter is understandable in terms of the local ring current of the 1,2-phenylene moiety of the bridging arm. Similar spectral patterns were observed for **14**, **15**, and **16** in CDCl₃, in which the pyrrolic β protons were observed at δ =7.78, 7.28, and 7.27 ppm, respectively, as a sharp singlet. The aryl protons (H^a) of the cap are observed at δ =5.54, 5.51, and 8.40 ppm

Figure 2. X-ray crystal structures of capped subporphyirn A) $15 \supset CHCl_3$ and B) $16-OH \supset$ mesitylene. Only the major orientation of disordered chloroform molecule inside the cavity is shown for (A).

for 14, 15, and 16, respectively, with high-field shifts compared with those of 4, 5, and 6 observed at $\delta = 6.19$, 6.09, and 8.87 ppm. These data indicated the influences of the diatropic ring currents, similar to the case of 12. Such shielding effects for the cap proton H^a decreased in the order of $12 \ge 14 > 15 > 16$ ($\Delta \delta = 1.75$, 0.65, 0.58, and 0.47 ppm, respectively), probably reflecting the average distance between the cap and the subporphyrin core. With the solid-state structures and the observed single sets of ¹H NMR spectroscopy signals, the capping reaction has been concluded to occur with complete concave-face selectivity for 12, 15, and 16. The similar ¹H NMR spectroscopy data of **14** strongly suggested the same concave-capped structure. The concave-capping selectivity can be readily ascribed to considerable steric effects exerted by the axially coordinated boron ligand at the convex face. Generally the solubilities of capped subporphyrins are much lower than 8. Particularly, the solubility of 13 is very poor, which does not allow us to detect a clear ¹H NMR spectrum in CDCl₃.

Spiral interconversion: VT-NMR spectroscopy: In the meantime, we found that 13 was reasonably soluble in DMSO and then examined a ¹H NMR spectrum in [D₆]DMSO. At room temperature, the ¹H NMR spectrum of 13 exhibited a C_3 -symmetric signal pattern, featuring a singlet due to the aryl cap H^a proton at $\delta = 6.56$ ppm, which undergoes the largest high-field shift in the series ($\Delta \delta = 2.14$ ppm) compared with trialdehyde 3. Interestingly, signals due to the β and benzyl protons H^f and H^k (see Scheme 4) resonate as

pairs of split two peaks at $\delta = 7.17$ and 6.00, 4.73 and 4.70, and 5.48 and 5.03 ppm, respectively. In particular, the signals due to H^k displayed a clear geminal coupling feature with $J_{\text{gem}} = 10.1 \text{ Hz}$ (Figure 3A). The large difference in chemical shifts of the two β-proton signals indicated their magnetically nonequivalent environments, hence supporting a C_3 -symmetrical helical structure of 13 in solution, similar to that found in the crystal structure. The high-field shifted signal at $\delta = 6.00$ ppm has been assigned to the β protons close to the 1,2-phenylene rings in the bridge (magenta in the top view of Figure 1B). Similarly, separated signals due to H^f and H^k can be explained in terms of a spiral conformation of 13. The NOESY spectrum of 13 in $[D_6]DMSO$ at room temperature also indicates a helical structure, featuring throughspace proton correlations between the cap H^a and *meso*-aryl H^e protons, and the β proton at $\delta = 6.00$ ppm and H^h or Hⁱ. In particular, the strong correlation between H^a and H^e is indicative of close stacking between the aryl ring of the cap and the subporphyrin core in solution. These ¹H NMR spectral features of 13 are different from those of 12, 14, 15, and 16, since the β - and benzylic protons in 12, 14, 15, and 16 are recorded as sharp and coalesced signals in CDCl₃ at room temperature (see Figure S1 in the Supporting Information), despite their spiral crystal structures. Since subporphyrins 12, 14, 15, and 16 exhibit essentially the same ¹H NMR spectral pattern in $[D_6]DMSO$, showing sharp β proton signals at $\delta = 7.32$, 7.47, 7.29, and 7.17 ppm, respectively, and coalesced benzyl protons due to H^f and H^k, the solvent effect would be marginal. It can be considered that

A EUROPEAN JOURNAL

Figure 3. a) 600 MHz VT⁻¹H NMR spectra of **13** in $[D_6]$ DMSO (*: solvent peaks), b) simulated ¹H NMR spectra for H^f, and c) interconversion between the *P* and *M* spiral forms.

rotational freedom of the *meso*-aryl groups is considerably suppressed in **12–16** due to the cap that connects to three *meso*-aryl substituents. Thus, the unique ¹H NMR spectral features of **13** may be assigned to a small exchange rate of two spiral conformations, that is, P and M spiral (Figure 3C) with respect to the ¹H NMR timescale, whereas such exchange rates are likely to be larger than the ¹H NMR timescale for the other capped subporphyrins **12**, **14**, **15**, and **16**. To verify this hypothesis, variable-temperature (VT) ¹H NMR spectra of **12**, **13**, and **16** were examined. Upon in-

¹H NMR spectra of **12**, **13**, and **16** were examined. Upon increasing the temperature, the split signals due to the β -, H^f, and H^k protons of **13** indeed showed significant peak broadening and finally coalesced at 120 °C into sharp singlets at $\delta = 6.71$ and 5.28 ppm due to the β - and H^f protons, and a doublet $(J(CH_2,NH)=5.5 \text{ Hz})$ at 4.75 ppm due to H^k (Figure 3). The other proton signals, such as H^a-H^e, and H^g-H^j, did not exhibit any characteristic shift or coalescence behavior and the total molecular symmetry of C_3 was preserved in a range from 25 to 140 °C. The temperature-dependent spectral changes of the β -, H^f, and H^k protons are reversible and the original spectrum of **13** was completely recovered upon cooling to room temperature. During the measurement, a sharp singlet due to the axial methoxo pro-

tons was observed at $\delta = -0.03$ to 0.08 ppm in the same signal intensity almost independently of the temperature. Thus, the observed dynamic motion of 13 is neither bowl-to-bowl inversion nor an axial-ligand exchange reaction, but interconversion of the helical structures with temperature-dependent exchange rates. The exchange rates of 13 were estimated to be k=14, 90, 510, 2050, 9000, and 40000 s⁻¹ at 25, 40, 60, 80, 100, and 120 °C, respectively, by simulating the NMR spectroscopy signal patterns for the benzyl proton H^k.

In the cases of 12 and 16, similar spectral changes were observed in CD₂Cl₂ upon decreasing the temperature (Figure 4 and the Supporting Information). The capped subporphyrin 12 exhibited sharp signals due to the β -, benzyl-H^f and H^k protons at $\delta = 7.48, 4.41$, and 3.89 ppm, respectively, at 25°C in CD₂Cl₂. These peaks were separated into three pairs of two broad signals at -75°C as shown in Figure 4A. The six β protons of **12** resonated at $\delta = 7.73$ and 7.12 ppm at

-90 °C, each signal corresponded to three protons. The ¹H NMR spectroscopy simulations were performed for H^f and H^k in the range from -90 to -15 °C, which allowed the estimation of the temperature-dependent exchange rate constants as k=100 to 35000 s⁻¹ (Figure 4B). Signals due to the β-, H^f, and ethylene chain protons of **16** also exhibited significant broadening at -70 °C in CD₂Cl₂. Finally at -90 °C, the signals of the β protons were divided into two parts at $\delta=7.25$ and 6.81 ppm, which were well reproduced by the simulated spectra with k=80 s⁻¹ (Figure S3 in the Supporting Information).

The exchange rate constants of **12**, **13**, and **16** were analyzed by Eyring plots, in which these capped subporphyrins displayed good linear correlations (Figure 5). The activation parameters of **13** in DMSO were calculated to be $\Delta H^{\pm} = 76.4 \text{ kJ mol}^{-1}$ and $\Delta S^{\pm} = 34.5 \text{ J mol}^{-1} \text{ K}^{-1}$, hence, the energy barrier of the interconversion between the *P* and *M* spiral forms was estimated to be $\Delta G^{\pm}_{298} = 66.1 \text{ kJ mol}^{-1}$ at 25 °C.

Table 1 summarizes the activation parameters thus calculated for **12**, **13**, and **16**. Interestingly, a negative value of $-45.7 \text{ J} \text{ mol}^{-1} \text{K}^{-1}$ was obtained for the entropy change of **12**, while the other two subporphyrins exhibited positive ΔS^{\pm} values. This can be simply explained in terms of the short

6870 -

Figure 4. a) 600 MHz VT⁻¹H NMR spectra of **12** in CD₂Cl₂ (*: solvent peaks), and b) simulated ¹H NMR spectra for benzylic proton H^{f} and H^{k} .

ture also indicate its structural tightness. The largest ΔH^{\dagger} and the energy barrier ΔG^{\dagger}_{298} were obtained for 13. Considering the crystal structure, throughspace interactions between the aryl ring of the cap and the subporphyrin core along with characteristic intramolecular CH-π interactions presumably play an important role in stabilizing the spiral conformation. It is worth noting that the ΔH^{\pm} value of subporphyrin **16** (50.4 kJ mol⁻¹) is considerably larger than that of **12** (28.9 kJ mol⁻¹). Although the resulting ΔG^{\dagger}_{298} of **16** is the smallest in the series due to its positive large entropy factor; this result might suggest favorable interactions between the 1,3,5-tri(alkoxycarbonyl)ben-

Figure 5. Eyring plots for capped subporphyrins 12, 13, and 16.

arm length. In the transition state, it is expected that the *meso*-aryl substituents are arranged in an almost perpendicular manner with respect to the subporphyrin mean plane, and the distance from the aryl ring of the cap to the subporphyrin core is longer than that of the spiral forms. In case of **12**, such conformational change results in the formation of a tight transition structure in which the free motion of the linker unit is restricted and three *meso*-aryl rings are forced to synchronize the tilting behavior due to the short strap. In contrast, capped subporphyrins **13** and **16**, bearing longer arms, are expected to obtain the degree of freedom in the transition structures rather than their spiral forms. Such influences of the arm length on the structure can be seen in their dihedral angles of *meso*-aryl rings in the solid state. Significantly large dihedral angles of **12** in the crystal struc-

Table 1. Structural data and activation parameters $^{[a]}$ of spiral motion of 12, 13, and 16.

	12	13	16
arm length ^[b]	2 atoms	3 atoms	5 atoms
arvl cap			
ur yr oup			
tilting angles ^[c] [°]	52.1	43.1	51.3
	62.8	46.0	51.3
	68.6	54.6	51.3
ΔH^{\pm} [kJ mol ⁻¹]	28.9	76.4	50.4
ΔS^{\dagger}	-45.7	34.5	67.9
$[J mol^{-1} K^{-1}]$			
$\Delta G^{*}{}_{298}$	43.5	66.1	30.2
$[kJ mol^{-1}]$			
$k_{298} [\mathrm{s}^{-1}]^{\mathrm{[d]}}$	2.2×10^{5}	16	3.2×10^{7}

[a] Activation parameters were calculated by simulating the VT-¹H NMR spectra of **12** and **16** in CD₂Cl₂ and **13** in [D₆]DMSO. [b] Number of linker atoms between the aryl group of the cap and the 1,2-phenylene ring. [c] Dihedral angles between the *meso*-aryl ring and the mean plane of six β carbon atoms in the crystal structure. The tilting angle of **16** was calculated from the structure of **16-OH** \supset mesitylene. [d] Exchanging rate constant between *P* and *M* spiral forms at 298 K. These values were calculated based on the Eyring equation.

core rather than 1,3,5-trialkoxymethylbenzene analogue in the capped system. In short, the dynamic spiral interconversion can be controlled entropically by arm length and enthalpically by intramolecular interactions between the subporphyrin core and the aryl ring of the cap. Such an adjustable feature of dynamic spiral interconversion is quite important both for biological movements^[23] and for constructing

artificial nanomachines.^[24] In this view, capped subporphyrins are also a promising platform owing to their highly tunable properties.

Optical properties: The UV/Vis absorption spectra of subporphyrins **8** and **12–16** recorded in CH_2Cl_2 are shown in Figure 6A. Recently, we have reported largely perturbed op-

Figure 6. A) UV/Vis absorption spectra and B) fluorescence spectra of **8** and **12–16** in CH₂Cl₂. Fluorescence spectra were recorded by excitation at the absorption maxima (377-382 nm).

tical properties of *meso*-(4-(N,N-dialkylamino)phenyl)-substituted subporphyrins^[6] which exhibited redshifted absorption spectra and intensified fluorescence compared with *meso*-triphenyl-substituted subporphyrin (**17**). Contrary to these 4-aminophenyl-substituted analogues, 3-aminophenylsubstituted subporphyrin **8** shows only modest changes in the absorption and fluorescence spectra. This difference can be attributed to small conjugative interaction of 3-aminophenyl substituent. Since the capping reaction can be con-

sidered merely as an N-alkylation reaction at the *meso*-substituted 3-aminophenyl groups, the direct π -electronic impact of the cap to the subporphyrin core should be trivial. In fact, the spectral shapes of capped subporphyrins **12** and **14** are analogous to that of **8**, although slight broadening of the Soret-like band was observed. In the absorption spectra of the capped subporphyrins 15 and 16, with five atom arms, much broader and redshifted Soret-like bands were observed at 382 and 380 nm, respectively. The fluorescence spectra of 12 and 15 displayed rather distinguishable vibronic structures at 507 and 532 nm, and 517 and 544 nm, respectively, whereas 14 and 16 have ill-defined spectral shapes as well as non-capped subporphyrin 8. These minor differences in the absorption and fluorescence spectra can be attributed to the conformational properties, such as structural rigidity, restriction of the free rotation of mesoaryl rings, and solvent accessibility into the cavity. The most significant perturbation was found in the absorption spectrum of 13, in which a sharp Soret-like band was recorded at 387 nm with the largest bathochromic shift in the series. Besides, the Q(0,0) band of 13 also exhibits a characteristic redshift to 497 nm with concurrent enhancement. Interestingly, the fluorescence spectrum of 13 shows a fine vibronic structure with band peaks at 515 and 546 nm. The Stokes shift of **13** thus calculated is 703 cm⁻¹, which is the smallest in the series, indicating its rigid structure in the excited state. The fluorescence quantum yields of capped subporphyrins are comparable to that of the mother subporphyrin 8 (Table 2). However, those of 1,3,5-tri(alkoxycarbonyl)benzene-capped subporphyrins 13 and 16 are slightly but distinctively enhanced compared with 8.

Table 2. Optical properties of subporphyrins 8 and 12-16.

Absorption		Fluorescence		Stokes shift [cm ⁻¹]
Soret [nm]	Q(0,0) [nm]	λ_{\max} [nm]	$\Phi_{ m F}$ [%]	
377	489	525	12.2	1402
377	487	507	13.2	810
387	497	515	16.6	703
377	487	515	13.3	1116
382	493	517	15.6	942
380	492	534	16.7	1598
	Absorption Soret [nm] 377 377 387 377 382 380	Absorption Soret [nm] Q(0,0) [nm] 377 489 377 487 387 497 377 487 382 493 380 492	Absorption Fluorescer Soret [nm] Q(0,0) [nm] λ _{max} [nm] 377 489 525 377 487 507 387 497 515 377 487 515 382 493 517 380 492 534	Absorption Fluorescent Soret [nm] $Q(0,0)$ [nm] λ_{max} [nm] Φ_F [%] 377 489 525 12.2 377 487 507 13.2 387 497 515 16.6 377 487 515 13.3 382 493 517 15.6 380 492 534 16.7

DFT calculations: DFT calculations were performed for 8, 12, and 13 at the B3LYP/6-31G(d) level by using the Gaussian 03 package (Figure 7).^[25] The optimized structures of 12 and 13 were calculated based on their crystal structures (data shown in Table 3 and the structure of 8 was generated from the crystal structure of meso-triphenylsubporphyrin 17. Subporphyrin 8 has four frontier orbitals similar to 17. Capped subporphyrin 12 also provides a similar four orbital set, which is indicative of a small direct influence of the cap on the electronic properties of the subporphyrin core in the ground state. Unlike 8 and 12, four vacant orbitals were found for capped subporphyrin 13 in a similar energy range, along with a couple of degenerated HOMOs. The orbital coefficients in the LUMO and LUMO+1 of 13 are localized at the aryl ring of the cap (Figure 7). LUMO +2 and LUMO+3 correspond to the unoccupied e orbitals due to the subporphyrin core. Namely, LUMO levels of the electron-deficient 1.3,5-tri(alkoxycarbonyl)benzene moiety are slightly lower than those of meso-(3-aminophenyl)subporphyrin. For comparison, frontier orbital energy levels of the

Figure 7. Molecular orbital (MO) diagrams of 8, 12, and 13. MOs of LUMO and LUMO +1 for 13 are localized on the aryl rings of the cap, therefore, the orbital diagrams are drawn as bottom views.

cap units of 12-16, that is, 1,3,5-triphenoxymethylbenzene (18), 1,3,5-trimethoxybenzene (19), and trimethylbenzene-1,3,5-tricarboxylate (20), were calculated at the B3LYP/6-31G(d) level (Figure S4 in the Supporting Information). The energy levels of the HOMOs for 18-20 are considerably lower than that of subporphyrin 8. Also, the LUMO of 20 is coincidentally similar in energy to that of 8 because of three electron-withdrawing ester groups. Although any significant orbital overlap or hybridization between the cap unit and the subporphyrin core were not found in the calculated MOs,^[26] such low-lying LUMOs of the cap would be advantageous for through-space π - π interactions with the concave surface of the subporphyrin core, as observed in the absorption spectrum of 13. In a previous report, similar absorption spectral changes have been observed for a capped porphyrin with an electron-deficient cap.^[27] Judging from the experimental and theoretical results, weak incipient charge-transfer interactions can also be expected for capped subporphyrin 13. In addition, similar cap-dependent unoccupied orbitals were found in the LUMO and LUMO +1 of subporphyrin 16. The observed absorption spectrum of 16, however, did not exhibit characteristic spectral changes compared with 13. It is more likely that the spectral shape of 16 is rather similar to that of 15 despite the difference in the aryl ring of the cap. This situation suggests that structural restraints and dynamic motions in solution based on the arm length are particularly important to induce efficient through-space interactions between the cap and the core as well as its π -electronic characters.

Conclusions

Capped subporphyrins **12–16** were synthesized in good yields from **8** and tripodal trialdehydes **2–6**. The complete concave-face selectivity of these capping reactions was unambiguously confirmed by ¹H NMR spectroscopy and X-ray crystallographic analysis. Capped subporphyrins **15** and **16**,

CHEMISTRY

	12	13	15 ⊃CHCl ₃	16-OH⊃mesitylene
formula	$C_{64}H_{51}B_1N_6O_4$.	$C_{67}H_{51}B_1N_6O_7$.	C ₇₀ H ₆₃ B ₁ N ₆ O ₇ •CHCl ₃ ,	$C_{69}H_{55}B_1N_6O_{10}$ · C_9H_{12}
	$2 \text{CH}_2 \text{Cl}_2$	$C_2H_6S_1O_1, C_1H_4O_1$	0.8 CHCl ₃ , CH ₃ OH	
crystal size [mm]	$0.20 \times 0.20 \times 0.10$	$0.40 \times 0.30 \times 0.20$	$0.65 \times 0.30 \times 0.20$	$0.35 \times 0.35 \times 0.20$
formula weight	1148.77	1173.12	1356.44	1259.19
crystal system	monoclinic	monoclinic	orthorhombic	cubic
space group	$P2_1/n$	C2/c	Pbca	Pa-3
a [pm]	16.799(5)	30.0417(11)	16.7601(15)	23.300(3)
b [pm]	22.051(7)	17.2535(19)	20.6452(18)	23.300(3)
c [pm]	17.270(5)	29.0055(18)	38.996(3)	23.300(3)
α [°]	90	90	90	90
β [•]	118.974(10)	108.808(3)	90	90
γ [°]	90	90	90	90
$V [nm^3]$	5597(3)	14231.5(19)	13493(2)	12649(3)
Ζ	4	8	8	8
T [K]	123(2)	123(2)	90(2)	123(2)
$\rho_{\rm calcd} [{\rm mg}{\rm m}^{-3}]$	1.363	1.095	1.335	1.322
total reflns	9689	16052	11880	3707
unique reflns	5895	8003	7957	1654
$\mu [{\rm mm}^{-1}]$	0.269		0.101	0.088
$R_1[I > 2\sigma(I)]$	0.0753	0.0859	0.0981	0.0995
wR_2 (all data)	0.1278	0.1564	0.3063	0.1920
GOF	1.022	0.958	1.035	1.041
CCDC ^[a] number	720912	720913	720914	720915

Table 3. Crystallographic data for compounds 12, 13, 15 CHCl₃, and 16-OH D mesitylene.

[a] CCDC-720912, 720913, 720914, and 720915 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

with an arm length of five atoms, have large inner cavities that are enough to encapsulate solvent molecules, such as mesitylene and chloroform. On the other hand, capped subporphyrins 12 and 13 exhibit rather tight structures, in which the cap units are closely stacked to the subporphyrin core. In particular, the intramolecular π - π interactions and multiple CH- π interactions of 13 result in a drastic decrease in the exchange rate between the P and M spiral forms in solution compared with 12 and 16. Besides, the through-space intramolecular interactions of 13 lead to the remarkable perturbations in the absorption spectrum. MO calculations also suggested favorable orbital interactions between the subporphyrin core and the cap through the low-lying LUMOs of the 1,3,5-tri(alkoxycarbonyl)benzene moiety. Further fabrication of capped subporphyrins are actively in progress in our laboratory.

Experimental Section

General: All reagents and solvents were of commercial reagent grade and were used without further purification. ¹H, ¹¹B, and ¹³C NMR spectra were recorded on a JEOL delta-600 spectrometer, and chemical shifts were reported on the delta scale in ppm relative to internal standards CHCl₃ (δ =7.26 ppm for ¹H, 77.16 ppm for ¹³C), CHDCl₂ (δ =5.30 ppm for ¹H), DMSO (δ =2.50 ppm for ¹¹B)). Spectroscopic grade solvents were used for all spectroscopic studies without further purification. UV/Vis absorption spectra were recorded on a Shimadzu UV-3100 spectrometer. Fluorescence spectra were recorded on a Hamamatsu Photonics C9920-02 spectrometer and absolute fluorescence quantum yields were measured by a photon-counting method using an integration sphere. ESI-TOF mass spectra were recorded on a Bruker Daltonics micro TOF LC instrument using positive-ion mode. Preparative separations were performed by silica gel gravity column chromatography (Wako gel C-300) or size-exclusion gel permeation chromatography (GPC) (Bio-Rad Bio-Beads S-X1, packed with THF in a 8×50 or 4×90 cm gravity column). Crystallographic data were collected on a Rigaku R-AXIS RAPID diffractometer with graphite monochromated $Mo_{K\alpha}$ radiation ($\lambda =$ 0.71075 Å) at -150 °C (for 12, 13, and 16-OH⊃mesitylene) or on a Bruker SMART APEX with graphite monochromated $Mo_{K\alpha}$ radiation $(\lambda =$ 0.71073 Å) −183°C (for at 15⊃CHCl₃).

Methoxo(5,10,15-tri(3-

nitrophenyl)subporphyrinato)boron-

(III) (9): This compound was synthesized from pyridine tri-*N*-pyrrolylborane (2.00 g, 6.94 mmol) and 3-nitrobenzaldehyde (3.10 g, 20.8 mmol) in the presence of TFA (0.75 mL) according to the general procedure for the synthesis of *meso*-triarylsubporphyrin. The product was purified by silica gel column chromatography (eluent: CH₂Cl₂/AcOEt=95:5). Subsequent recrystallization from CH₂Cl₂/ MeOH gave **9** as an orange powder (41 mg, 0.9%). ¹H NMR (600 MHz,

CDCl₃): $\delta = 8.85$ (s, 3H; meso-Ar-o-H), 8.50 (d, J = 7.4 Hz, 3H; meso-Aro or p-H), 8.43 (d, J = 7.4 Hz, 3H; meso-Ar-o or p-H), 8.14 (s, 6H; β -H), 7.92 (t, J = 7.4 Hz, 3H; meso-Ar-m-H), 0.82 ppm (s, 3H; axial-OMe); ¹¹B NMR (193 MHz, CDCl₃): $\delta = -15.4$ ppm (s, 1B); ¹³C NMR (150 MHz, CDCl₃): $\delta = 148.6$, 141.4, 138.8, 138.5, 129.9, 127.4, 123.1, 122.7, 118.6, 46.8 ppm (axial-OMe); UV/Vis (in CH₂Cl₂): $\lambda (\varepsilon) = 373$ (141 000), 460 nm (14000 m⁻¹ cm⁻¹); fluorescence (in CH₂Cl₂), $\lambda_{ex} = 373$ nm): $\lambda_{max} = 512$ nm, $\Phi_{\rm F} = 8 \times 10^{-3}$; HR-ESIMS-TOF (positive mode): m/z calcd for C₃₃H₁₈N₆B₁O₆: 605.1381 [*M*-OMe]⁺; found: 605.1396.

Methoxo(5,10,15-tri(3-bromophenyl)subporphyrinato)boron(III) (10): This compound was synthesized from pyridine tri-N-pyrrolylborane (2.00 g, 6.94 mmol) and 3-bromobenzaldehyde (2.45 mL, 21.0 mmol) in the presence of TFA (1.03 mL) according to the general procedure. The product was purified by silica gel column chromatography (eluent: CH_2Cl_2 /hexane/ether = 1:2:1). Subsequent recrystallization from CH_2Cl_2 / MeOH gave 10 as an orange powder (252 mg, 4.9%). ¹H NMR (600 MHz, CDCl₃): $\delta = 8.19$ (s, 3H; meso-Ar-o-H), 8.13 (s, 6H; β -H), 7.99 (d, J=8.1 Hz, 3H; meso-Ar-o-H), 7.78 (d, J=7.8 Hz, 3H; meso-Ar-p-H), 7.58 (t, J=7.8 Hz, 3H; meso-Ar-m-H), 0.81 ppm (s, 3H; axial-OMe); ¹¹B NMR (193 MHz, CDCl₃): $\delta = -15.3$ ppm (s, 1B); ¹³C NMR (150 MHz, CDCl₃): $\delta = 141.3$, 139.2, 135.9, 131.9, 131.2, 130.3, 122.9, 122.5, 119.3, 46.9 ppm (axial-OMe); UV/Vis (in CH₂Cl₂): λ (ϵ) = 373 (158000), 460 nm $(13\,000\,\text{m}^{-1}\,\text{cm}^{-1})$; fluorescence (in CH₂Cl₂, $\lambda_{\text{ex}} = 373\,\text{nm}$): $\lambda_{\text{max}} = 517\,\text{nm}$, $\Phi_{\rm F} = 0.139$; HR-ESIMS-TOF (positive mode): m/z calcd for $C_{34}H_{21}N_{3}B_{1}Br_{3}ONa:$ 759.9207 [*M*+Na]⁺; found: 759.9213.

Methoxo (5, 10, 15-tri (3-benzamidophenyl) subporphyrinato) boron (III)

(11): Subporphyin 10 (140 mg, 190 μ mol), benzamide (83 mg, 84 μ mol), [Pd₂(dba)₃] (4.9 mg, 5.3 μ mol), Xantphos (9.2 mg, 15.9 μ mol), Cs₂CO₃ (260 mg, 800 μ mol), and degassed 1,4-dioxane (6 mL) were added to a 20 mL Schlenk tube under an N₂ atmosphere. The resulting mixture was degassed through three freeze-thaw cycles and then heated to 90 °C for 1 day. After cooling the solution the reaction mixture was passed through a short Celite pad and the solvent was evaporated. The crude product obtained was purified by GPC column chromatography (4×90 cm) and the axial ligand of the separated product was completely converted to the methoxo form by several dissolve–evaporate cycles in a mixture of

6874

CH₂Cl₂/MeOH (1:1). Recrystallization of the residue from CH₂Cl₂/ hexane gave subporphyrin **11** (133 mg, 82%). ¹H NMR (600 MHz, [D₆]DMSO): δ =10.63 (s, 3H; NH) 8.62 (s, 3H; *meso*-Ar-*o*-H), 8.37 (s, 6H; β-H), 8.12 (d, *J*=8.2 Hz, 3H; *meso*-Ar-*o* or *p*-H), 8.04 (d, *J*=7.4 Hz, 6H; Ph-*o*-H), 7.09 (d, *J*=8.2 Hz, 3H; *meso*-Ar-*o* or *p*-H), 7.78 (t, *J*= 7.8 Hz, 3H; *meso*-Ar-*m*-H), 7.62 (t, *J*=7.4 Hz, 3H; Ph-*p*-H), 7.56 (t, *J*= 7.3 Hz, 6H; Ph-*m*-H), 0.63 ppm (s, 3H; axial-OMe); ¹¹B NMR (193 MHz, CDCl₃): δ =-15.5 ppm (brs, 1B); ¹³C NMR (150 MHz, CDCl₃): δ =140.8, 138.8, 137.7, 134.6, 131.6, 129.2, 128.3, 127.3, 125.1, 123.3, 122.4, 120.1, 119.9, 46.6 ppm (axial-OMe); UV/Vis (in CH₂Cl₂): λ (ε)=376 (164000), 462 nm (12000 m⁻¹ cm⁻¹); fluorescence (in CH₂Cl₂), λ_{ex} =373 nm); λ_{max} = 520 nm, $\Phi_{\rm F}$ =0.178; HR-ESIMS-TOF (positive mode): *m/z*: calcd for C₅₅H₃₉N₆B₁O₄Na: 881.3027 [*M*+Na]⁺; found: 881.3022.

Methoxo(5,10,15-tri(3-aminophenyl)subporphyrinato)boron(III) (8)

Reduction of nitro groups: Subporphyrin 9 (10–50 mg) was dissolved in a minimal amount of chloroform, the solution was diluted with ethanol (15 mL) and 1 M aqueous HCl (15 mL) and $\text{SnCl}_2 2 \text{ H}_2 \text{O}$ (20 equiv) were added. The resulting mixture was vigorously stirred at 70 °C for 7 h. (The reaction was monitored by TLC. In case the reaction was sluggish, another 5–10 mL of 1 M aqueous HCl was added to the solution.) After cooling, 1 M aqueous NaOH was added to make the solution basic and the product was repeatedly extracted with CH₂Cl₂ until the aqueous layer became colorless. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and the solvent was evaporated. The solid obtained was dissolved in methanol (ca. 20 mL) and the solution was heated at reflux for 30 min. After evaporating the solvent, the axially methoxo-coordinated product was recrystallized from CH₂Cl₂/hexane to give subporphyrin **8** quantitatively as an orange solid.

Hydrolysis of amido groups: Subporphyrin 11 (133 mg, 155 µmol) and NaOH (5.0 g) were dissolved in a mixture of EtOH (30 mL)/THF (3 mL)/water (10 mL). The resulting solution was heated at reflux overnight. After cooling the system, dilute hydrochloric acid ($\approx 10\%$) was added to make the solution weakly basic. The product was extracted with CH2Cl2 until the colored aqueous layer became colorless. The combined organic layer was washed with brine, dried over Na₂SO₄, and the solvent was evaporated. The axial ligand of the crude product was converted into the methoxo form through three dissolve-evaporate cycles in a mixture of CH2Cl2/MeOH (1:1). Finally, the crude product was recrystallized from CH₂Cl₂/hexane to give 8 (92 mg, 92%). ¹H NMR (600 MHz, CDCl₃): $\delta = 8.13$ (s, 6H; β -H), 7.45 (t, J = 7.6 Hz, 3H; meso-Ar-m-H), 7.41 (s, 3H; meso-Ar-o-H), 7.40 (d, J=6.4 Hz, 3H; meso-Ar-o-H), 6.92 (d, J=8.7 Hz, 3H; meso-Ar-p-H), 3.92 (brs, 6H; NH₂), 0.81 ppm (s, 3H; axial-OMe); ¹¹B NMR (193 MHz, CDCl₃): $\delta = -15.3$ ppm (s, 1B); ^{13}C NMR (150 MHz, CDCl₃): $\delta\!=\!146.6,\,140.9,\,138.4,\,129.5,\,123.9,\,122.2,$ 120.7, 120.0, 114.6, 46.8 ppm (axial-OMe); UV/Vis (in CH₂Cl₂): λ (ϵ) = 377 (170000), 489 nm ($12000 \text{ m}^{-1} \text{ cm}^{-1}$); fluorescence (in CH₂Cl₂, λ_{ex} = 377 nm): $\lambda_{\text{max}} = 522$ nm, $\Phi_{\text{F}} = 0.09$; HR-ESIMS-TOF (positive mode): m/zcalcd for C₃₃H₂₄N₆B₁: 515.2156 [M-OMe]+; found: 515.2159.

General procedure for preparing capped subporphyrins: Trifluoroacetic acid (10 μ L) and a tripodal aldehyde (1.0 equiv, 27.5 μ mol) were added to a solution of subporphyrin 8 (15.0 mg, 27.5 μ mol) in a mixture of CH₂Cl₂ (360 mL) and *i*PrOH (90 mL) and the solution was stirred at room temperature for 1 day. After the addition of NaBH₃CN (150 mg), the solution was stirred additional 1 day. The resulting solution was concentrated to ca. 20 mL by evaporation and then poured into water (50 mL). The product was extracted with CH₂Cl₂ and the organic layer was washed with water, dried with Na₂SO₄, and the solvent was evaporated to dryness. The crude product was purified by gravity GPC column chromatography (4×90 cm, eluent: THF). The axial ligand of the obtained product was completely converted into the methoxo form through dissolve–evaporate cycles in a mixture of CH₂Cl₂/MeOH. Recrystallization from CH₂Cl₂/MeOH (for **12**, **13**, **14**, and **16**) or CH₂Cl₂/hexane (for **15**) gave the corresponding capped subporphyrin as an orange powder.

Capped subporphyrin 12: Yield: 80%; ¹H NMR (600 MHz, CDCl₃ at 25°C): $\delta = 7.66$ (d, J = 7.3 Hz, 3H; H^b), 7.62 (d, J = 6.8 Hz, 3H; H^g), 7.52 (t, J = 7.6 Hz, 3H; H^c), 7.52 (s, 6H; β-H), 7.33 (t, J = 7.3 Hz, 3H; Hⁱ), 7.14 (s, 3H; H^e), 7.11 (t, J = 6.9 Hz, 3H; H^h), 6.98 (d, J = 8.2 Hz, 3H; H^d), 6.80 (d, J = 8.3 Hz, 3H; H^j), 5.77 (s, 3H; cap-H^a), 4.95 (brt, 3H; NH), 4.43 (d,

 $J = 5.5 \text{ Hz}, 6\text{ H}; \text{ benzyl-H}^{\text{f}}), 3.90 \text{ (s, 6H; benzyl-H}^{\text{k}}), 0.56 \text{ ppm (s, 3H; axial-OMe); }^{11}\text{B} \text{ NMR (193 MHz, CDCl_3): } \delta = -15.9 \text{ ppm (s, 1B); HR-ESIMS-TOF (positive mode): } m/z \text{ calcd for } C_{63}\text{H}_{48}\text{N}_6\text{B}_1\text{O}_3\text{: } 947.3886 [M-OMe]^+; \text{ found: } 947.3884; \text{UV/Vis (in CH}_2\text{Cl}_2\text{): } \lambda \text{ (ϵ) } 377 \text{ (144000)}, 461 \text{ (16000)}, 487 \text{ nm (11000 } \text{m}^{-1}\text{cm}^{-1}\text{)}; \text{ fluorescence (in CH}_2\text{Cl}_2, \lambda_{ex} = 377 \text{ nm}\text{): } \lambda_{max} = 507 \text{ nm}, \Phi_{\rm F} = 0.132.$

Capped subporphyrin 13: Yield: 59%; ¹H NMR (600 MHz, [D₆]DMSO at 25°C): $\delta = 7.75$ (d, J = 7.7 Hz, 3H; H^g or H^j), 7.66–7.62 (t, t, and d, 9H; H^{h} , H^{i} , and H^{g} or H^{j}), 7.50 (t, J = 7.8 Hz, 3H; H^{c}), 7.19 (d, J = 7.3 Hz, 3H; H^{b}), 7.17 (brs, 3H; β-H), 7.13 (d and brt, 6H; H^{d} and NH), 6.75 (s, 3H; H^e), 6.56 (s, 3H; cap-H^a), 6.00 (brs, 3H; β-H), 5.48 (d, J_{gem} = 10.1 Hz, 3H; benzyl-H^k), 5.03 (d, $J_{gem} = 10.1$ Hz, 3H; benzyl-H^k), 4.73 (br d, 3H; benzyl-H^f), 4.70 (brd, 3H; benzyl-H^f), -0.03 ppm (s, 3H; axial-OMe); ¹H NMR (600 MHz, [D₆]DMSO at 120 °C): $\delta = 7.79$ (d, J = 7.4 Hz, 3H; H^{g} or H^{j}), 7.65 (d, J = 7.4 Hz, 3H; H^{g} or H^{j}), 7.62 (t, J = 7.3 Hz, 3H; H^{h} or Hⁱ), 7.58 (t, J=7.3 Hz, 3 H; H^h or Hⁱ), 7.50 (t, J=7.3 Hz, 3 H; H^c), 7.24 (d, J = 7.3 Hz, 3H; H^b), 7.14 (d, J = 8.2 Hz, 3H; H^d), 6.84 (s, 3H; H^e), 6.74 (brt, 3H; NH), 6.71 (brs, 6H; β-H), 6.67 (s, 3H; cap-H^a), 5.28 (s, 6H; benzyl-H^k), 4.76 (d, J=5.5 Hz, 6H; benzyl-H^f), 0.08 ppm (s, 3H; axial-OMe); UV/Vis (in CH₂Cl₂ at 25°C): λ (ε) 387 (136000), 471 (13000), 497 nm (17000 M^{-1} cm⁻¹); fluorescence (in CH₂Cl₂, λ_{ex} = 387 nm): λ_{max} =515 nm, Φ_{F} =0.166; HR-ESIMS-TOF (positive mode): m/z calcd for C₆₆H₄₈N₆BO₆ and C₆₇H₅₁N₆BO₇Na: 1031.3733 [M-OMe]⁺, 1085.3810 [*M*+Na]⁺; found: 1031.3736, 1085.3785.

Capped subporphyrin 14: Yield: 58%; ¹H NMR (600 MHz, CDCl₃ at 25°C): δ = 7.78 (s, 6H; β-H), 7.77 (d, *J* = 7.3 Hz, 3H; H^b), 7.55 (d, *J* = 7.4 Hz, 3H; H^s), 7.53 (t, *J* = 7.4 Hz, 3H; H^c), 7.28 (d, *J* = 7.4 Hz, 3H; Hⁱ), 7.10 (t, *J* = 7.4 Hz, 3H; H^b), 6.93 (d, *J* = 8.1 Hz, 3H; H^d), 6.76 (d, *J* = 8.4 Hz, 3H; H^j), 6.64 (s, 3H; H^c), 5.54 (s, 3H; cap-H^a), 4.23 (brs, 6H; benzyl-H^f), 4.20 (brs, 3H; NH), 3.99 (brt, 6H; ethylene), 3.72 (brt, 6H; ethylene), 0.75 ppm (s, 3H; axial-OMe); ¹¹B NMR (193 MHz, CDCl₃): δ = -15.3 ppm (s, 1B); UV/Vis (in CH₂Cl₂): λ (ε) = 377 (132000), 461 nm (18000 m⁻¹ cm⁻¹); fluorescence (in CH₂Cl₂), λ_{ex} = 377 nm): λ_{max} = 515 nm, $\Phi_{\rm F}$ =0.133; HR-ESIMS-TOF (positive mode) *m/z* calcd for C₆₆H₅₄N₆B₁O₆: 1037.4203 [*M*-OMe]⁺; found: 1037.4205.

Capped subporphyrin 15: Yield: 85%; ¹H NMR (600 MHz, CDCl₃ at 25°C): $\delta = 7.64$ (d, J = 7.3 Hz, 3H; H^b), 7.60 (d, J = 7.6 Hz, 3H; H^g), 7.53 (t, J = 8.3 Hz, 3H; H^e), 7.36 (t, J = 6.8 Hz, 3H; Hⁱ), 7.28 (s, 6H; β -H), 7.20 (t, J = 7.3 Hz, 3H; H^h), 7.00 (d, J = 8.3 Hz, 3H; H^d), 6.83 (d, J = 7.8 Hz, 3H; H^j), 6.54 (s, 3H; H^e), 5.51 (s, 3H; cap-H^a) 4.53 (brs, 3H; NH), 4.31 (brs, 6H; benzyl-H^t), 3.93 (t, J = 5.0 Hz, 6H; -O-CH₂-CH₂-), 3.66 (t, J = 5.0 Hz, 6H; -O-CH₂-CH₂-), 1.99 (quintet, J = 5.0 Hz, 6H; -O-CH₂-CH₂-), 0.57 ppm (s, 3H; axial-OMe); ¹¹B NMR (193 MHz, CDCl₃): $\delta = -15.8$ ppm (s, 1B); UV/Vis (in CH₂Cl₂): λ (ε)=382 (124000), 467 (13000), 493 nm (14000 M⁻¹ cm⁻¹); fluorescence (in CH₂Cl₂, $\lambda_{ex} = 382$ nm); $\lambda_{max} = 517$ nm, $\Phi_F = 0.156$; HR-ESIMS-TOF (positive mode): *m*/z calcd for C₆₉H₆₀N₆B₁O₆: 1079.4673 [*M*-OMe]⁺; found: 1079.4680.

Capped subporphyrin 16: Yield: 70%; ¹H NMR (600 MHz, CDCl₃ at 25°C): δ = 8.40 (s, 3H; cap-H^a), 7.63 (d, *J*=7.3 Hz, 3H; H^b), 7.56 (d, *J*= 7.8 Hz, 3H; H^g), 7.53 (t, *J*=7.3 Hz, 3H; H^c), 7.38 (t, *J*=6.8 Hz, 3H; H^j), 7.27 (s, 6H; β-H), 7.18 (t, *J*=7.4 Hz, 3H; H^b), 6.99 (d, *J*=7.3 Hz, 3H; H^d), 6.82 (d, *J*=7.8 Hz, 3H; H^j), 6.48 (s, 3H; H^e), 4.54 (brs, 9H; NH and -OCH₂-), 4.31 (brd, 6H; benzyl-H^f), 4.08 (brs, 6H; -OCH₂-), 0.56 ppm (s, 3H; axial-OMe); ¹¹B NMR (193 MHz, CDCl₃): δ =-15.8 ppm (s, 1B); UV/Vis (in CH₂Cl₂) λ (ε) 380 (108000), 466 (11000), 492 nm (12000 m⁻¹ cm⁻¹); fluorescence (in CH₂Cl₂, λ_{ex} =380 nm); λ_{max} =534 nm, $\Phi_{\rm F}$ =0.167; HR-ESIMS-TOF (positive mode): *m/z* calcd for C₆₉H₅₄N₆B₁O₉: 1121.4051 [*M*-OMe]⁺; found: 1121.4045.

Acknowledgements

This work was supported by a Grant-in-Aid (A) (No. 19205006) for Scientific Research from MEXT. Y.I. thanks the JSPS Research Fellowship for Younger Scientists.

CHEMISTRY

A EUROPEAN JOURNAL

- [1] Y. Inokuma, J. H. Kwon, T. K. Ahn, M.-C. Yoon, D. Kim, A. Osuka, Angew. Chem. 2006, 118, 975–978; Angew. Chem. Int. Ed. 2006, 45, 961–964.
- [2] a) R. Myśliborski, L. Latos-Grażyński, L. Szterenberg, T. Lis, Angew. Chem. 2006, 118, 3752–3756; Angew. Chem. Int. Ed. 2006, 45, 3670–3674; b) E. A. Makarova, S. Shimizu, A. Matsuda, E. A. Luk'yanets, N. Kobayashi, Chem. Commun. 2008, 2109–2111; c) Z.-L. Xue, Z. Shen, J. Mack, D. Kuzuhara, H. Yamada, T. Okujima, N. Ono, X.-Z. You, N. Kobayashi, J. Am. Chem. Soc. 2008, 130, 16478– 16479.
- [3] a) T. Xu, R. Lu, X. Liu, P. Chen, X. Qiu, Y. Zhao, *Eur. J. Org. Chem.* 2008, 1065–1071; b) Y. Inokuma, S. Hayashi, A. Osuka, *Chem. Lett.* 2009, 38, 206–207; c) Y. Inokuma, A. Osuka, *Dalton Trans.* 2008, 2517–2526.
- [4] a) N. Kobayashi, Y. Takeuchi, A. Matsuda, Angew. Chem. 2007, 119, 772–774; Angew. Chem. Int. Ed. 2007, 46, 758–760; b) Y. Takeuchi, A. Matsuda, N. Kobayashi, J. Am. Chem. Soc. 2007, 129, 8271–8281; c) Y. Inokuma, Z. S. Yoon, D. Kim, A. Osuka, J. Am. Chem. Soc. 2007, 129, 4747–4761.
- [5] Y. Inokuma, S. Easwaramoorthi, S. Y. Jang, K. S. Kim, D. Kim, A. Osuka, *Angew. Chem.* 2008, 120, 4918–4921; *Angew. Chem. Int. Ed.* 2008, 47, 4840–4843.
- [6] Y. Inokuma, S. Easwaramoorthi, Z. S. Yoon, D. Kim, A. Osuka, J. Am. Chem. Soc. 2008, 130, 12234–12235.
- [7] Y. Inokuma, A. Osuka, Org. Lett. 2008, 10, 5561-5564.
- [8] E. Tsurumaki, S. Saito, K. S. Kim, J. M. Lim, Y. Inokuma, D. Kim, A. Osuka, J. Am. Chem. Soc. 2008, 130, 438–439.
- [9] E. Tsurumaki, Y. Inokuma, S. Easwaramoorthi, J. M. Lim, D. Kim, A. Osuka, *Chem. Eur. J.* 2009, 15, 237–247.
- [10] a) A. Meller, A. Ossko, Monatsh. Chem. 1972, 103, 150–155;
 b) C. G. Claessens, D. González-Rodríguez, T. Torres, Chem. Rev. 2002, 102, 835–853;
 c) T. Torres, Angew. Chem. 2006, 118, 2900–2903; Angew. Chem. Int. Ed. 2006, 45, 2834–2837.
- [11] Y. T. Wu, J. S. Siegel, Chem. Rev. 2006, 106, 4843.
- [12] a) H. Sakurai, T. Daiko, T. Hirao, *Science* 2003, *301*, 1878; b) L. T. Scott, M. M. Hashemi, M. S. Bratcher, *J. Am. Chem. Soc.* 1992, *114*, 1920–1921; c) A. Borchardt, A. Fuchicello, K. V. Kilway, K. K. Baldridge, J. S. Siegel, *J. Am. Chem. Soc.* 1992, *114*, 1921–1923.
- [13] a) C. G. Claessens, T. Torres, J. Am. Chem. Soc. 2002, 124, 14522–14523;
 b) R. S. Iglesias, C. G. Claessens, T. Torres, G. M. A. Rahman, D. M. Guldi, Chem. Commun. 2005, 2113–2115.
- [14] Y. Inokuma, A. Osuka, Chem. Commun. 2007, 2938-2940
- [15] a) W. Ma, K. M. Wilcoxen, J. W. Szewczyk, J. A. Ibers, J. Org. Chem. 1995, 60, 8081-8083; b) W. Ma, C. Slebodnick, J. A. Ibers, J. Org. Chem. 1993, 58, 6349-6353; c) A. Osuka, F. Kobayashi, K. Maruyama, Bull. Chem. Soc. Jpn. 1991, 64, 1213-1225; d) J. Almog, J. E. Baldwin, M. J. Crossley, J. F. Debernardis, R. L. Dyer, J. R. Huff, M. K. Peters, Tetrahedron 1981, 37, 3589-3601; e) R. P. Bonar-Law, J. K. M. Sanders, J. Chem. Soc. Perkin Trans. 1 1995, 3085-3096; f) E. J. Rose, P. N. Venkatasubramanian, J. C. Swartz, R. D. Jones, F. Basolo, B. M. Hoffman, Proc. Natl. Acad. Sci. USA 1982, 79, 5742-5745; g) J. Almog, J. E. Baldwin, R. L. Dyer, M. Peters, J. Am. Chem. Soc. 1975, 97, 226-227; h) M. R. Johnson, W. K. Seok, J. A. Ibers, J. Am. Chem. Soc. 1991, 113, 3998-4000; i) R. P. Bonar-Law, J. K. M. Sanders, J. Am. Chem. Soc. 1995, 117, 259-271; j) H.-Y. Zhang, A. Blaskó, J.-Q. Yu, T. C. Bruice, J. Am. Chem. Soc. 1992, 114, 6621-6630; k) A. E. Rowan, P. P. M. Aarts, K. W. M. Koutstaal, Chem. Commun. 1998, 611-612; l) M. J. Gunter, D. C. R. Hockless, M. R. Johnston, B. W. Skelton, A. H. White, J. Am. Chem. Soc. 1994, 116, 4810-4823.
- [16] a) J. A. Cowan, J. K. M. Sanders, J. Chem. Soc. Perkin Trans. 1 1985, 2435–2437; b) D. Ricard, B. Andrioletti, M. L'Her, B. Boitrel,

Chem. Commun. **1999**, 1523–1524; c) J. E. A. Webb, F. Maharaj, I. M. Blake, M. J. Crossley, *Synlett* **2008**, 2147–2149; d) B. Botta, P. Ricciardi, C. Galeffi, M. Botta, A. Tafi, R. Pogni, R. Iacovino, I. Garella, B. D. Blasio, G. D. Monache, *Org. Biomol. Chem.* **2003**, *1*, 3131–3137.

- [17] J. S. Lindsey, D. C. Mauzerall, J. Am. Chem. Soc. 1982, 104, 4498– 4500.
- [18] J. Yin, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 6043-6048.
- [19] a) P. D. W. Boyd, C. A. Reed, Acc. Chem. Res. 2005, 38, 235–242; b) T. Ishii, N. Aizawa, R. Kanehama, M. Yamashita, K. Sugiura, H. Miyasaka, Coord. Chem. Rev. 2002, 226, 113–124; c) K. Tashiro, T. Aida, J.-Y. Zheng, K. Kinbara, K. Saigo, S. Sakamoto, K. Yamaguchi, J. Am. Chem. Soc. 1999, 121, 9477–9478; d) M. Yanagisawa, K. Tashiro, M. Yamasaki, T. Aida, J. Am. Chem. Soc. 2007, 129, 11912– 11913.
- [20] a) T. Kawase, H. Kurata, Chem. Rev. 2006, 106, 5250-5273; b) H. Sakurai, T. Daiko, H. Sakane, T. Amaya, T. Hirao, J. Am. Chem. Soc. 2005, 127, 11580-11581; c) R. Potz, M. Göldner, H. Hückstädt, U. Cornelissen, A. Tutaß, H. Homborg, Z. Anorg. Allg. Chem. 2000, 626, 588-596; d) M. S. Rodríguez-Morgade, C. G. Claessens, A. Medina, D. González-Rodríguez, E. Gutiérrez-Puebla, A. Monge, I. Alkorta, J. Elguero, T. Torres, Chem. Eur. J. 2008, 14, 1342-1350; e) B. W. Smith, M. Monthioux, D. E. Luzzi, Nature 1998, 396, 323-324; f) Y.-T. Wu, J. S. Siegel, Chem. Rev. 2006, 106, 4843-4867.
- [21] For subphthalocyanines, $\pi(\text{bowl})-\pi(\text{plane})$ interactions between a subphthalocyanine cation and an aromatic solvent have been reported, see: T. Kato, F. S. Tham, P. D. W. Boyd, C. A. Reed, *Heteroat. Chem.* **2006**, *17*, 209–216.
- [22] In the refinement of the crystal structure, the hydrogen atom of the axial B-OH group was generated at three equivalent positions with the same occupancy of 33.3% to preserve C_3 molecular symmetry.
- [23] F. A. Samatey, K. Imada, S. Nagashima, F. Vonderviszt, T. Kumasaka, M. Yamamoto, K. Namba, *Nature* 2001, 410, 331–337.
- [24] a) S. Hiraoka, M. Shiro, M. Shionoya, J. Am. Chem. Soc. 2004, 126, 1214–1218; b) S. Hiraoka, E. Okuno, T. Tanaka, M. Shiro, M. Shionoya, J. Am. Chem. Soc. 2008, 130, 9089–9098.
- [25] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, O. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT. 2004.
- [26] TD-DFT calculations were also performed on the optimized structure of 13 at the B3LYP/6-31Gd level, which showed forbidden transition natures for the electronic transitions from HOMO-1 or HOMO to LUMO or LUMO+1 (see also the Supporting Information).
- [27] N.E. Kagan, D. Mauzerall, R.B. Merrifield, J. Am. Chem. Soc. 1977, 99, 5484–5486.

Received: April 3, 2009 Published online: June 5, 2009

6876 -