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ABSTRACT

Asymmetric desymmetrization of allylic oxidation of 4,5-epoxycyclohex-1-ene (1) took place in the presence of 2.5 mol % of Cu(CH3CN)4PF6

and 3 mol % of chiral N,N-bidentate ligand (S)-2 to afford (3S,4S,5S)-3-benzoyloxy-4,5-epoxycyclohex-1-ene (3) in 84% ee, which was increased
up to >99% ee after recrystallization of 3-4′-nitrobenzoyloxy derivative 6. Optically pure 6 proved to be a key intermediate for enantioselective
synthesis of O-protected 2-deoxystreptamine (2-DOS) precursor 12.

There have been many reports on asymmetric allylic oxida-
tion of olefins with tert-butyl perbenzoate.1,2 However, these
reactions still have problems to be overcome such as sub-
strate limitations and poor reactivity.3 In practice, only some
simple cycloalkenes were suitable substrates for this oxidative
reaction. Olefins with other functional groups have only
rarely been explored as substrates presumably due to their
poor tolerance to the oxidative conditions.4 Recently, we
developed a chiral N,N-bidentate imine (Schiff base)-copper
catalyst for asymmetric allylic oxidation of simple cyclic
olefins which exhibited high reactivity as well as good

enantioselectivity.5 In this paper, we will disclose the first
example of allylic oxidation of a meso cyclic epoxyolefin,
which will lead to products with high potential toward further
transformations, especially considering the existence of the
double bond and epoxy group.

We first examined the effect of copper precursors com-
bined with chiral imine (Schiff base) 2 on reactivity and
enantioselectivity (Table 1).

With use of Cu(OTf)2, tert-butyl perbenzoate disappeared
in 5 h, but only trace amounts of products were detected
(entry 1). The Cu(OTf)2-PhNHNH2 system, which is an
effective copper source for simple cyclic olefins, gave
complicated products, although the perester disappeared in
3 h. The use of CuOTf·0.5C6H6 afforded a mixture of 3 and
4 in 40% yield after 15 h. The use of Cu(CH3CN)4PF6 was
found to be the best choice as the copper source and gave
higher yields and ee values. When 4,5-epoxycyclohex-1-ene
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was treated with tert-butyl perbenzoate in the presence of 5
mol % of Cu(CH3CN)4PF6 and 6 mol % of chiral imine
(Schiff base) ligand 2 at 25 °C in acetone, trans-3-
benzoyloxy-4,5-epoxycyclohex-1-ene (3) and its cis isomer
4 were obtained nonselectively (75% yield), though the ee
values of both isomers were relatively high, i.e., 85% ee for
3 and 89% ee for 4. When the reaction was carried out at
0 °C, trans-3 and cis-4 were obtained in up to 90% ee and
92% ee, respectively. It should be mentioned that the reports
of asymmetric allylic oxidation of functionalized cyclic
olefins are only a few.6 It is interesting that a prolonged
reaction time (40 h) increased the trans/cis isomer ratio up
to >99/1, though the yield was lower. We confirmed that
the prolonged reaction time caused the cis isomer to react

with the solvent, affording 5 in 25% yield7,8 (Scheme 1).
When tert-butyl p-nitroperbenzoate2g was used instead of
tert-butyl perbenzoate, the desired trans isomer 3 was
obtained resulting in 82% ee and >99% ee after recrystal-
lization in only 15% yield. Furthermore, tert-butyl p-
nitroperbenzoate is not commercially abvailable, so we had
to prepare it according to the reported method.2g Therefore,
we selected the route as shown Scheme 2. It should be

mentioned that 1,3-dioxolane 5 was not observed when the
perester existed. It seemed that the valence state of copper
in the presence of the perester, proposed as Cu(III), did not
catalyze the transformation of 4 to 5. As for the structure of
4, we determined it as the cis isomer of 3. Judging from the
COSY spectrum of the 1,3-dioxolane 5 from the cis isomer
4, lack of correlation of the double bond protons and the
neighboring protons of the 1,3-dioxolane should exclude the
possibility of the regioisomeric compound (see the Support-
ing Information, p 8).

Optically active 3 was then transformed into its derivative
6, which had better crystallinity, in order to improve the
optical purity by recrystallization. It was possible to use a
lower load of catalyst (2.5 mol %) without a deleterious effect
on the enantioselectivity (84% ee). As expected, the ee of 6
was improved to >99% ee in 23% yield after recrystallization
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Table 1. Enantioselective Allylic Oxidation of 4,5-
Epoxycyclohex-1-ene (1)

entry Cu precursor time/h yield/%a 3/4
ee of

3b

ee of
4c

1 Cu(OTf)2 5 trace
2 Cu(OTf)2-PhNHNH2 3 trace
3 CuOTf·0.5C6H6 15 40 1/1 82 79
4 Cu(CH3CN)4PF6 16 75 1/1 85 89
5d Cu(CH3CN)4PF6 72 46 1/1 90 92
6 Cu(CH3CN)4PF6 40 32 >99/1 85

a Isolated yield of 3 and 4. b Determined by 1H NMR and HPLC.
c Determined by HPLC (Chiralpak AS). d The reaction was carried out at
0 °C.

Scheme 1

Scheme 2
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from compound 1 (three steps) (Scheme 2). This procedure
was successfully carried out on a 15-g scale.9

The relative configuration of 6 was determined by X-ray
analysis as shown in Figure 1. The absolute configuration

of 6 was assigned as (3S,4S,5S) by conversion to a known
compound 14.10,11

Then we applied the present method to the synthsis of
O-protected 2-deoxystreptamine (2-DOS) precursor. Re-

cently, 2-DOS and its analogues have attracted much interest
as the central scaffold of clinically important aminoglycoside
antibiotics, and the first generation of RNA-targeted ligands
has already been designed.12,13 From a synthetic perspective,
enantiopure 2-DOS derivatives pose an interesting synthetic
challenge due to the five contiguous stereogenic centers, thus
numerous attempts including chemical or enzymatic desym-
metrization of meso-2-deoxystreptamine,13a,14 degradation of
neomycin and kanamycin,15 and total synthesis from a chiral
pool16 have been made. Therefore, we applied our asym-
metric desymmetrization by allylic oxidation of 4,5-epoxy-
cyclohex-1-ene (1) giving enantiopure alcohol 7 to a
straightforward synthsis of O-protected 2-DOS precursor and
its regioisomer as the key step.

The synthesis of optically pure 4,5-O-protected 2-deoxy-
streptamine is summarized in Scheme 3. Treatment of 6 with

0.05 equiv of NaOMe/methanol solution afforded enantiopure
alcohol 7 quantitatively. It should be mentioned that this is
the first report of an optically active form of 7.17 After MOM
protection, ring-opening of compound 8 with NaN3 afforded
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hexane/EtOAc (8:1) as eluent, to give crude 3 as an oil (12.5 g), which
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mmol) and methanol (6 mL)) was added. After 2 h, the reaction was
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mL, 71 mmol) and a solution of 4-nitrobenzoyl chloride (10.8 g, 58 mmol)
in CH2Cl2 (50 mL) was added dropwise over 30 min. The mixture was
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mL/30 mL) to afford enantiopure 6 as a colorless slice (9.5 g, 23% for
three steps). Rf ) 0.30 (hexane/EtOAc ) 2/1); mp 125-127 °C; [R]21

D

+209 (c 0.5, CHCl3, 99.1% ee). The ee value was determined by HPLC on
a Chirapak AS column (hexane/2-propanol ) 90/10, 1.0 mL/min, tR of major
isomer (3S,4S,5S): 20.9 min; tR of major isomer (3R,4R,5R): 23.7 min).
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from D-glucose in 13 steps) was [R]D +106.2 (c 1.16, CHCl3). The details
of the transformation of 3 to 14 will be published in a separate paper.
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Figure 1. ORTEP diagram of 6 with ellipsoids set at 50%
probability.

Scheme 3
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9 regioselectively. Epoxidation of acetate-protected 10 with
m-CPBA followed by ring-opening of 11 gave a mixture of
1213c and its regioisomer 13 in 90% yield (12/13 ) 45/55),
which were readily separated by chromatography.

In conclusion, we have revealed a straightforward enan-
tioselective synthesis of 4,5-O-protected 2-deoxystreptamine
based on asymmetric desymmetrization of 4,5-epoxycyclo-
hex-1-ene. Asymmetric allylic oxidation took place in the
presence of 2.5 mol % of Cu(CH3CN)4PF6 and 3 mol % of
chiral N,N-bidentate ligand 2 to afford 3-benzoyloxy-4,5-
epoxycyclohex-1-ene (3) in 84% ee, which was increased
to >99% ee after recrystallization of 4-nitrobenzoyloxy
derivative 6. This method generates three carbon stereogenic

centers in one reaction utilizing an asymmetric desymmetric
reaction. We believe this method provides a useful protocol
for the asymmetric version of the Kharasch-Sosnovosky
allylic oxidation reaction of functionalized cycloalkenes.
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