

Available online at www.sciencedirect.com

Steroids 69 (2004) 271-277

Steroids

www.elsevier.com/locate/steroids

Selective ring-opening carbonylation of epoxy-steroids $\stackrel{\text{tr}}{\to}$

Attila Balázs^a, Csilla Benedek^b, Gábor Szalontai^c, Szilárd Törös^{a,*}

^a Department of Organic Chemistry, University of Veszprém, H-8201 Veszprém, P.O. Box 158, Hungary
^b Chemical Institute of the Hungarian Customs and Finance Guard, H-1163 Budapest, 20-22 Hősök Fasora, Hungary
^c University of Veszprém, NMR Laboratory, H-8201 Veszprém, P.O. Box 158, Hungary

Received 8 April 2003; received in revised form 9 February 2004; accepted 17 February 2004

Abstract

Ring-opening alkoxycarbonylation of epoxy-steroids has been carried out with a $Co_2(CO)_8/3$ -hydroxypyridine catalytic system. High chemo- and regioselectivities were obtained under the reaction conditions applied. Structural analysis of the products proved their high stereochemical purity in each case, accompanied by inversion of the original configuration. No carbonylation took place for sterically hindered steranic epoxides.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Epoxy-steroid; Cobalt; Homogeneous catalysis; Alkoxycarbonylation; Asymmetric ring-opening

1. Introduction

Stereospecific nucleophilic substitution reactions of chiral carbon atoms represent a challenging, fast developing area of asymmetric catalysis. Such transformations have already been applied in successful desymmetrization of *meso*-substrates, kinetic resolution of racemic compounds and stereospecific reactions of enantiopure compounds ([1] and references therein).

The development of asymmetric ring-opening (ARO) reactions of epoxides has advanced rapidly since the discovery of Jacobsen's metal–salen catalyst complexes. Applied successfully in asymmetric epoxidation, these catalysts have proven to be efficient in ring-opening reactions as well ([1] and references therein). Available either by classical methods [2] or by transition metal-catalyzed oxidation [3,4], epoxides are valuable sources leading to a wide range of products, such as β -amino alcohols [5], β -hydroxy esters [6], α -aryloxy alcohols [7], β -hydroxy mercaptans [8], and diols [9].

As far as ring-opening carbonylation is concerned, some authors found that alkynyl oxiranes can be carbomethoxylated in presence of palladium catalysts to yield axially chiral 5-hydroxy-penta-2,3-dienoates [10,11]. Also, a tridentate ligand-containing (P,P,N)-Co(CO)₄ catalyst together with BF3·Et2O was tested with good results in transformation of simple and functionalized epoxides to B-lactones [12]. It was Drent who reported first selective catalytic carbonylation of epoxides using $Co_2(CO)_8$ as catalyst with 3-hydroxypyridine as co-catalyst [13]. Based on this report and their own previous results, Jacobsen's team transformed a series of terminal, enantiomerically pure epoxides regioand enantioselectively into β-hydroxy esters [6]. Considering the reaction above as a starting point, we investigated its application to non-terminal steroidal epoxides (Fig. 1) as rather complex molecules of obvious biological importance. Our goal was also to screen the optimal reaction conditions, catalyst composition, and substrate-selectivity interdependence, as well as the influence of the nucleophilic reagent. The new compounds prepared were then to be isolated and fully characterized, especially from the point of view of stereochemistry.

2. Experimental

Tetrahydrofuran (THF) was dried over sodium and distilled under argon in presence of benzophenone prior to use. Anhydrous alcohols and solvents were purchased from Sigma-Aldrich. The starting steroids were received from the Chemical Works of Gedeon Richter Ltd. Crude $Co_2(CO)_8$ was prepared at our site by a well-known method [14]. After recrystallization from dichloromethane and pentane its purity was checked by IR spectroscopy [15]. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Varian Unity 300

[☆] Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.steroids.2004.02.003

^{*} Corresponding author. Tel.: +36-88-442-022; fax: +36-88-427-492. *E-mail address:* toros@almos.vein.hu (S. Törös).

Fig. 1. Structures of the starting steroids.

spectrometer (Palo Alto, CA, USA) at 300 and 75.5 MHz, respectively. Proton chemical shifts were referenced to residual CHCl₃ (δ = 7.24), and ¹³C NMR chemical shifts were referenced to the solvent CDCl₃ (δ = 77.0). ¹H and ¹³C assignments were based on DEPT, COSY, CYCLENOE, and NOESY experiments. GLC analyses were performed on a Hewlett-Packard 5917 gas chromatograph fitted with a 10 m HP-1 column. GC–MS measurements were run on a Hewlett Packard 5971A GC-MSD with a 25 m HP-1 column. TLC analyses were performed on silica gel TLC-cards with fluorescent indicator at 254 nm (0.2 mm, Fluka), the chromatograms were developed in an iodine chamber. FT-IR spectra were obtained with Avatar 330 Thermo Nicolet spectrophotometer in KBr pellets. All manipulations were performed under argon using standard inert techniques.

2.1. Preparation procedure

In a typical procedure a solution of 1.5 mL of THF and 20 mmol (1.1 mL) ethanol was transferred under argon into a

20 mL stainless steel autoclave containing the epoxy-steroid **1** (1 mmol, 288 mg), $Co_2(CO)_8$ (0.05 mmol, 17.4 mg), and 0.3 mmol (19.2 mg) 3-hydroxypyridine. The autoclave was pressurized to 100 atm with CO, placed into an oil bath, heated to 75 °C, and stirred magnetically for 72 h at this temperature. The reaction was followed by GLC and TLC. Chromatography on neutral alumina with ethyl acetate/hexane (1:1), ethyl acetate/hexane (3:1), and ethyl acetate yielded the desired compound, ethyl ester **7b** (307 mg, 85%) which was then characterized by GC–MS and various NMR techniques.

2.2. Characterization of the products

2.2.1. Methyl 3α -hydroxy-17-keto- 5α -androstan- 2β -carboxylate (**7a**)

White powder (isolated yield: 132 mg, 38%), mp = $112 \degree$ C; $[\alpha]_D = 58$ (c = 1 in chloroform); TLC: $R_f = 0.38$ [ethyl acetate/hexane (2:3) as eluting solvent]; ¹H NMR (δ , CDCl₃): 0.65 (s, 3H, C¹⁹H₃), 0.80 (s, 3H,

273

C¹⁸*H*₃), 0.68–2.43 (m, 20H, ring protons), 2.62 (m, 1H, C²*H*), 3.63 (s, 3H, –OC*H*₃), 4.38 (m, 1H, C³*H*); ¹³C NMR (δ , CDCl₃): 11.87, 13.77, 20.20, 21.67, 27.75, 30.66, 31.47, 33.31, 34.74, 35.13, 35.77, 36.45, 39.05, 44.64, 47.75, 51.33, 51.47, 54.6, 65.89, 175.13, 221.35; MS (*m*/*z*/relative intensity): 348/64 [M⁺], 330/23, 271/25, 218/63, 147/40, 105/100; IR (KBr, ν [cm⁻¹]): 1736 (C=O).

2.2.2. Ethyl 3α -hydroxy-17-keto- 5α -androstan- 2β -carboxylate (**7b**)

White powder (isolated yield: 307 mg, 85%), mp = $119 \,^{\circ}$ C; $[\alpha]_D = 60 \ (c = 1 \ \text{in chloroform})$; TLC: $R_f = 0.42$ [ethyl acetate/hexane (2:3) as eluting solvent]; ¹H NMR (δ , CDCl₃): 0.68 (s, 3H, C¹⁹H₃), 0.89 (s, 3H, C¹⁸H₃), 0.94–2.15 (m, 20H, ring protons), 1.24 (t, J = 7 Hz, 3H, $-\text{OCH}_2\text{CH}_3$), 2.6 (m, 1H, C²H), 4.14 (q, J = 7 Hz, 2H, $-\text{OCH}_2\text{CH}_3$), 4.42 (m, 1H, C³H); ¹³C NMR (δ , CDCl₃): 12.06, 13.8, 14.1, 20.16, 21.68, 27.75, 30.66, 31.48, 33.36, 34.75, 35.14, 35.77, 36.5, 39.06, 44.83, 47.72, 51.36, 54.61, 60.34, 65.99, 174.58, 221.27; MS (*m*/*z*/relative intensity): 362/26 [M⁺], 344/30, 270/12, 218/33, 147/30, 105/100; IR (KBr, ν [cm⁻¹]): 1701, 1733 (C=O).

2.2.3. Isopropyl 3α -hydroxy-17-keto- 5α -androstan- 2β -carboxylate (**7c**)

White powder (isolated yield: 330 mg, 88%), mp = 183–187 °C; $[\alpha]_D = 62$ (c = 1 in chloroform); TLC: $R_f = 0.47$ [ethyl acetate/hexane (2:3) as eluting solvent]; ¹H NMR (δ , CDCl₃): 0.69 (s, 3H, C¹⁹ H_3), 0.82 (s, 3H, C¹⁸ H_3), 1.20 (d, J = 6.1 Hz, 3H, –CH(C H_3)₂), 1.24 (d, J = 6.1 Hz, 3H, –CH(C H_3)₂), 0.91–2.45 (m, 20H, ring protons), 2.58 (m, 1H, $J_1 = 8.7$ Hz, $J_2 = 2.7$ Hz, C²H), 4.39 (q, 1H, J = 2.7 Hz, C³H), 5.0 (septet, 1H, J = 6.1 Hz, -COC $H(CH_3)_2$); ¹³C NMR (δ , CDCl₃): 12.19, 13.81, 20.11, 21.65, 21.68, 21.75, 27.75, 30.67, 31.49, 33.34, 34.75, 35.1, 35.78, 36.53, 39.04, 45.03, 47.76, 51.36, 54.61, 66.03, 67.70, 174.04, 221.34; MS (m/z/relative intensity): 376/32 [M⁺], 358/18, 333/21, 315/100, 218/33, 147/30, 105/10; IR (KBr, ν [cm⁻¹]): 1722 (C=O).

2.2.4. Ethyl 2 β -hydroxy-17-keto-5 α -androstan-3 α -carboxylate (**10b**)

White powder (isolated yield: 288 mg, 80%), mp = 122–125 °C; $[\alpha]_D = 115$ (c = 1 in chloroform); TLC: $R_f = 0.54$ [ethyl acetate/hexane (2:3) as eluting solvent]; ¹H NMR (δ , CDCl₃): 0.83 (s, 3H, C¹⁸H₃), 0.99 (s, 3H, C¹⁹H₃), 0.94–2.47 (m, 20H, ring protons), 1.24 (t, J = 7 Hz, 3H, -OCH₂CH₃), 2.6 (m, 1H, C²H), 4.14 (q, J = 7 Hz, 2H, -OCH₂CH₃), 4.42 (m, 1H, C³H); ¹³C NMR (δ , CDCl₃): 13.8, 14.18, 14.62, 20.09, 21.66, 26.0, 27.94, 30.55, 31.48, 34.36, 35.72, 35.76, 42.33, 42.52, 46.66, 47.78, 51.31, 55.18, 60.35, 67.91, 173.78, 221.27; MS (*m*/*z*/relative intensity): 362/2 [M⁺], 345/5, 270/10, 231/20, 213/10, 147/18, 121/25, 107/65, 79/75, 67/80, 55/100; IR (KBr, ν [cm⁻¹]): 1726, 1734 (C=O).

2.2.5. Isopropyl 2β -hydroxy-17-keto- 5α -androstan- 3α -carboxylate (**10c**)

White powder (isolated yield: 315 mg, 84%), mp = 174 °C; $[\alpha]_D = 112 \ (c = 1 \ \text{in chloroform})$; TLC: $R_f = 0.6$ [ethyl acetate/hexane (2:3) as eluting solvent]; ¹H NMR (δ , CDCl₃): 0.67 (m, 1H,), 0.82 (s, 3H, C¹⁸H₃), 1.01 (s, 3H, C¹⁹H₃), 0.78–2.44 (m, ring protons), 1.19 (d, $J = 6.1 \ \text{Hz}$, 3H, -CH(CH₃)₂), 1.22 (d, $J = 6.1 \ \text{Hz}$, 3H, -CH(CH₃)₂), 1.22 (d, $J = 6.1 \ \text{Hz}$, 3H, -CH(CH₃)₂), 2.65 (m, 1H, C³H), 4.39 (q, 1H, $J = 3.1 \ \text{Hz}$, C²H), 5.0 (septet, 1H, $J = 6.1 \ \text{Hz}$); ¹³C NMR (δ , CDCl₃): 13.8, 14.64, 20.09, 21.66, 21.71, 21.79, 26.05, 27.99, 30.61, 31.48, 34.38, 35.72, 35.77, 43.34, 42.54, 46.76, 47.78, 51.29, 55.26, 67.54, 67.94, 173.25, 221.25; MS (*m*/*z*/relative intensity): 376/1 [M⁺], 335/3, 316/8, 231/12, 213/10, 173/11, 149/15, 121/22, 107/34, 93/48, 67/70, 55/100; IR (KBr, ν [cm⁻¹]): 1722, 1736 (C=O).

2.2.6. Methyl 17 α -hydroxyandrostane-16 α -carboxylate (13a)

White powder (isolated yield: 94 mg, 28%), mp = 109 °C; [α]_D < 1 (c = 1 in chloroform); TLC: R_f = 0.45 [ethyl acetate/hexane (1:4) as eluting solvent]; ¹H NMR (δ , CDCl₃): 0.66 (s, 3H, C¹⁸H₃), 0.76 (s, 3H, C¹⁹H₃), 0.6–1.88 (m, 22H, ring protons), 2.01 (m, 1H, C¹⁵H), 2.68 (m, 1H, C¹⁶H), 3.68 (s, 3H, -OCH₃), 3.98 (d, 1H, J = 1.4 Hz, C¹⁷H); ¹³C NMR (δ , CDCl₃): 12.18, 16.84, 20.07, 22.13, 26.71, 28.88, 28.96, 29.25, 31.74, 32.31, 35.29, 36.23, 38.67, 45.08, 46.89, 49.64, 51.83, 52.57, 54.25, 82.8, 175.43; MS (*m*/*z*/relative intensity): 334/6 [M⁺], 306/32, 288/19, 274/34, 256/25, 233/100, 217/48, 149/53, 109/54, 95/51; IR (KBr, ν [cm⁻¹]): 1736 (C=O).

2.2.7. Ethyl 17 α -hydroxyandrostane-16 α -carboxylate (**13b**)

White powder (isolated yield: 285 mg, 82%), mp = 113–115 °C; $[\alpha]_D < 1$ (c = 1 in chloroform); TLC: $R_f = 0.46$ [ethyl acetate/hexane (1:4) as eluting solvent]; ¹H NMR (δ , CDCl₃): 0.66 (s, 3H, C¹⁸H₃), 0.76 (s, 3H, C¹⁹H₃), 0.66–1.75 (m, 22H, ring protons), 1.21 (t, 3H, J = 7.1 Hz, $-OCH_2CH_3$), 2.01 (m, 1H, C¹⁵H), 2.67 (dt, 1H, $J_1 = 8.7$ Hz, $J_2 = 1.5$ Hz, C¹⁶H), 3.98 (d, 1H, J = 1.5 Hz, C¹⁷H), 4.13 (q, 2H, J = 7.1 Hz, $-OCH_2CH_3$); ¹³C NMR (δ , CDCl₃): 12.18, 14.22, 16.82, 20.09, 22.13, 26.72, 28.89, 28.96, 29.25, 31.76, 35.28, 35.30, 36.27, 38.67, 45.06, 46.88, 49.63, 52.79, 54.20, 60.54, 82.78, 174.98; MS (m/z/relative intensity): 348/1 [M⁺], 274/16, 256/35, 233/100, 217/31, 149/21, 109/14, 95/11; IR (KBr, ν [cm⁻¹]): 1729 (C=O).

2.2.8. Isopropyl 17 α -hydroxyandrostane-16 α -carboxylate (13c)

White powder (isolated yield: 304 mg, 84%), mp = 77–83 °C; $[\alpha]_D < 1$ (c = 1 in chloroform); TLC: $R_f = 0.46$ [ethyl acetate/hexane (1:4) as eluting solvent]; ¹H NMR (δ , CDCl₃): 0.66 (s, 3H, C¹⁸H₃), 0.77 (s, 3H, C¹⁹H₃), 0.66–1.7 (m, 22H, ring protons), 1.2 (d, 6H, J = 6.4 Hz,

-CH(CH₃)₂), 2.01 (m, 1H, C¹⁵*H*), 2.66 (dt, $J_1 = 8.5$ Hz, $J_2 = 1.4$ Hz, 1H, C¹⁶*H*), 3.98 (d, J = 1.4 Hz, 1H, C¹⁷*H*), 5.00 (septet, 1H, J = 6.4 Hz, -OC*H*(CH₃)₂); ¹³C NMR (δ , CDCl₃): 12.18, 16.77, 20.09, 21.76, 22.13, 26.72, 28.89, 28.97, 29.22, 31.74, 32.31, 35.28, 35.31, 36.29, 38.67, 45.05, 46.89, 49.61, 53.01 54.22, 67.69, 82.78, 174.45; MS (*m*/*z*/relative intensity): 362/1 [M⁺], 334/4, 301/10, 274/14, 256/14, 233/100, 217/33, 149/20, 109/20, 95/13; IR (KBr, ν [cm⁻¹]): 1724 (C=O).

2.2.9. 2 (or 3)-Hydroxy-3 (or 2)-methyoxy-17-

ketoandrostane (**9***a*)

MS (*m*/*z*/relative intensity): 320/5, 270/5, 230/12, 215/5, 108/22, 97/90, 84/100, 67/50, 55/66.

2.2.10. 2 (or 3)-Hydroxy-3 (or 2)-ethyoxy-17ketoandrostane (**9b**)

MS (*m*/*z*/relative intensity): 334/25, 270/8, 218/100, 190/80, 161/92, 147/50, 105/100, 91/85, 55/50.

2.2.11. 2 (or 3)-Hydroxy-3 (or 2)-isopropyloxy-17ketoandrostane (**9***c*)

MS (*m*/*z*/relative intensity): 348/6, 326/8, 281/14, 270/16, 231/18, 214/5, 161/10, 107/60, 91/45, 55/100.

2.2.12. 16 (or 17)-Methyoxy-17 (or 16)-

hydroxyandrostane (14a)

MS (*m*/*z*/relative intensity): 306/60, 274/32, 259/28, 243/55, 217/100, 189/50, 149/48, 109/85, 95/82, 67/80, 55/72.

2.2.13. 16 (or 17)-Ethyoxy-17 (or 16)hydroxyandrostane (**14b**)

MS (*m*/*z*/relative intensity): 320/44, 305/3, 274/20, 259/24, 243/80, 231/75, 217/100, 203/64, 189/65, 149/35, 109/26, 55/16.

2.2.14. 16 (or 17)-Isopropyloxy-17 (or 16)hydroxyandrostane (**14c**)

MS (*m*/*z*/relative intensity): 334/5, 306/40, 274/45, 256/30, 233/100, 217/32, 149/14, 109/5, 55/4.

3. Results and discussion

3.1. Alkoxycarbonylation of 2α , 3α - and 2β , 3β -epoxy- 5α -androstan-17-ones (1 and 2)

Screening for the optimal reaction conditions, catalyst composition, and influence of nucleophilic reagent was carried out using epoxide **1** as a model substrate. The progress of the reaction (Fig. 2) was monitored by GC, GC–MS, and TLC.

The conditions described by Jacobsen for simple oxiranes with methanol resulted in only moderate conversion and low yield (Table 1). As side-reactions, water elimination from the substrate and direct nucleophilic attack of the alcohol on the substrate were detected, this latter resulting in ether **9a–c** formation which were identified by GC–MS analysis of the reaction mixture. Compound **9a** was further characterized also by ¹H NMR from chromatographically enriched samples in mixture with **7a**.

Both reaction time and temperature were increased to reach an almost complete conversion (Table 1); however, hydroxy ester yield remained still unsatisfactory. In EtOH better results were obtained. While further temperature increase shifts the product composition towards undesired side-reactions, higher pressure proved to be beneficial. Since product yields were only moderate, we changed the co-catalyst/Co molar ratio, which was determinant for our reaction.

The effect of nucleophilic reagent was studied as well (Table 2). At similar conversions the chemo- and regiose-lectivity increased with an increasing bulkiness of the alcohol. The main side-reaction, ether formation, is facilitated especially in the case of methanol.

Fig. 2. Alkoxycarbonylation of 2,3-epoxy-steroids.

Table 1									
Determination	of	the	optimal	reaction	conditions	in	alkoxycarbonylation	of	1 ^a

Run	Alcohol	Base/Co ratio(mol/mol)	Reaction time(h)	Reaction temperature (°C)	$P_{\rm CO}$ (atm)	Conversion ^b (%)	Yield ^c (%)
1	MeOH	2	9	65	45	51	24
2	MeOH	2	72	75	45	97	27
3	EtOH	2	9	75	45	77	20
4	EtOH	2	72	75	45	90	43
5	EtOH	2	144	75	45	93	46
6	EtOH	2	72	105	45	74	24
7	EtOH	2	72	75	100	95	49
8	EtOH	6	72	75	100	95	91

^a General conditions: 1 mmol substrate 1; 0.05 mmol Co₂(CO)₈ catalyst; 3-hydroxypyridine; 1 mL THF; 20 mmol alcohol; CO atmosphere.

^b [(1 mmol unreacted 1/1 mmol starting 1)] × 100.

^c [mmol (7b + 8b)/mmol 1] \times 100 based on GC.

It should be mentioned that a control experiment was carried out during which a pure sample of 7c was reacted under the standard reaction conditions in order to check its stability. After 72 h the hydroxy ester was recovered unchanged, as verified by GC–MS and ¹H NMR.

3.1.1. Structure elucidation

The structure and configuration of the new molecules were determined from their ¹H NMR spectra (for all spectra referred to see *Supporting information*). Detailed measurements have been carried out on pure samples of 7c and 10c.

There are two distinct one-proton signals in the spectrum of **7c** at 4.46 and 2.58 ppm, corresponding to the protons of –OH- and –COOR-substituted methylene groups, respectively. To decide between the two possible regioisomers (3-hydroxy, 2-carboxylate, or 2-hydroxy, 3-carboxylate), one has to identify unambiguously the coupling partners and the magnitude of the relevant scalar couplings. This was possible by routine two-dimensional (2D) (COSY 90-45 spectra) and one-dimensional (1D) ¹H techniques. Good use was made of the large diax-

Table 2 Alkoxycarbonylation of epoxy-steroids **1**, **2**, and **3** with different alcohols^a

Product	Conversion ^b	Chemoselectivity ^c	Regioselectivity ^d	
	(%)	(%)	(%)	
7a	99	70	93	
7b	98	91	95	
7c	96	95	97	
10b	98	90	96	
10c	98	96	97	
13a	96	68	99	
13b	98	89	99	
13b	96	91	99	

^a General conditions: 1 mmol steroid **1**, **2**, or **3**; 0.3 mmol 3-hydroxypyridine; 0.05 mmol $Co_2(CO)_8$; 1.5 mL THF; 20 mmol alcohol; 100 atm CO; 75 °C.

 $^{\rm b}\,[(1\,\text{mmol}\,\text{unreacted}\,1,\,2,\,\text{or}\,3/1\,\text{mmol}\,\text{starting}\,1,\,2,\,\text{or}\,3)\,\times\,100],$ based on GC.

^c [(mmol esters/mmol products) \times 100], based on GC.

 $^{\rm d}$ [(mmol major ester/mmol major + minor esters) \times 100], based on GC.

ial vicinal couplings which gave sufficiently strong cross peaks. Based on these spectra, we could identify isopropyl 3-hydroxy-17-ketoandrostan-2-carboxylate as the main product. The minor amount of isomeric β -hydroxy ester **8c** was identified on the base of the ¹H spectrum of a sample containing esters **7c** and **8c**, chromatographically enriched in the latter. Two signal pairs with similar fine structure at 4.46 and 4.38 ppm and at 2.96 and 2.58 ppm indicate the presence of two possible regioisomers.

Concerning the α or β position of the substituents on the A ring, the fine structures of the ¹H signals gave important clues. The small coupling values observed for both signals exclude the existence of diaxial relations between the protons involved. Assuming the usual chair conformation for the A ring, this predicts C²H^{α} and C³H^{β} position for the protons, i.e. 2 β and 3 α positions for the –COOR and –OH substituents, respectively [16,17]. These configurations were confirmed further by steady-state 1D NOE difference and 2D transient NOE (NOESY) experiments [17].

The same measurements have been carried out for **10c** when the product was found to be isopropyl 2β -hydroxy- 5α -androstan-17-one- 3α -carboxylate. Comparison of the ¹H NMR spectra of **7c** and **10c** revealed a low-frequency (upfield) shift of the C¹⁹H₃ protons for **7c**, indicating the spatial proximity of –COOR and the angular methyl group as an other evidence for the configuration deduced.

As obvious from the various NMR measurements, the stereochemistry of the starting materials 1 and 2 has not been preserved, as the configuration of the carbon atoms bearing –COOR substituents has changed. This seems to be in agreement with those observed by other authors for simple, non-terminal epoxides, where inversion of configuration occurs at the supposed site of attack [18,19].

3.2. Alkoxycarbonylation of 16α , 17α -epoxy- 5α -androstane (3)

Likewise the 2,3-epoxy-derivatives discussed above, unhindered 16,17-epoxide 3 underwent efficient alkoxycarbonylation in the Co-catalyzed process (Fig. 3). The conditions of the reaction were analogous to the former,

Fig. 3. Alkoxycarbonylation of 16a,17a-epoxy-steroids.

Fig. 4. Alkoxycarbonylation of 16α,17α-epoxy-17-substituted epoxy-pregnenes.

and high chemo- and regioselectivities were observed in the main product **13a** (Table 2, lines 4–6). The same tendencies were observed also when the alcohol was varied. The high regioselectivities are attributed to the steric effect of the angular $C^{18}H_3$ methyl group [20,21]. Losses in chemoselectivity are due again to ether (**14a–c**) formation.

3.2.1. Structure elucidation

The relevant NMR spectra (see Supporting information) were obtained on a chromatographically purified sample of 13c. In the ¹H NMR spectrum there is only one signal at 3.98 ppm (doublet with a small coupling value of 1.4 Hz) and with an integral value of one proton and an other one-proton signal at much lower frequency (2.66 ppm). This latter has, however, double-triplet fine structure, indicating almost identically strong (\sim 8–9 Hz) couplings to two other protons and a small one (1.4 Hz) to the signal at 3.98 ppm. Based on their chemical shift values, we can safely assume that these are the C¹⁷H and C¹⁶H ring protons attached to carbon atoms bearing -OH and -COOR groups, respectively. Since the signal at 3.98 ppm shows only a small coupling, the isopropyl 16-hydroxyandrostane-17-carboxylate regioisomer can be excluded, the main structure being isopropyl 17-hydroxyandrostane-16-carboxylate.

Concerning the α or β position of the substituents on the conformationally more flexible D ring, the answer is less obvious (in comparison with the A ring), since the ring conformation is always perturbed by the substituents themselves. Nevertheless, fine structures of the ¹H signals give again important clues. The very small coupling [22] (1.4 Hz) between C¹⁷H and C¹⁶H (although smaller than the typical three-bond equatorial–axial couplings obtained from the generalized Karplus equation [23] and experimental data [24]) suggests 16 α ,17 β or 17 α ,16 β arrangement for them. 1D NOE measurements indicate that $C^{17}H$ is β , therefore, $C^{16}H$ must be α , so the original configuration of the C^{16} carbon atom involved was not preserved during the reaction (like in the 2,3-epoxy cases).

3.3. Alkoxycarbonylation of sterically hindered epoxy-steroids

Pregnenolones with sterically hindered 16,17-epoxides (**5** and **6**) were subjected to alkoxycarbonylation in presence of EtOH under the same conditions. No ester could be detected by GC–MS analyses. TLC screening of the mixture showed one dominant product, which remained the same if reacting the substrate with MeOH. The ¹H NMR spectrum of the product revealed the formation of a pregnadiene as a result of a reductive elimination reaction (Fig. 4). The 5,6-double bond was left intact under the conditions applied.

The other sterically hindered substrate **4** was reacted with ethanol for as long as 96 h. As TLC analyses showed, a rather complex reaction mixture was formed. The GC–MS and ¹H NMR spectra of the components showed that no carbonylation took place, and only unsaturated steroids were detectable. This is in agreement with our former results obtained in carbonylation of sterically hindered unsaturated steroids [21].

4. Conclusion

Homogeneous catalytic ring-opening alkoxycarbonylation of various epoxy-steroids has been carried out successfully in presence of $Co_2(CO)_8/3$ -hydroxypyridine as catalyst precursor. The reactions took place in a highly chemo- and regioselective manner with unhindered 2,3- and 16,17-epoxides. Conversion and selectivity depended on the suitable choice of the conditions and the Co/base ratio, as well as the bulkiness of the nucleophilic reagent. Even more important is the accessibility and position of the epoxide moiety. No carbonylation took place with 5,6- and 16,17-epoxides where a C–O bond belongs to a tertiary carbon atom.

The resulting steroidal β -hydroxy esters were obtained as isomerically pure compounds. The new compounds were isolated and characterized in pure form. Both 2α , 3α - and 2β , 3β -epoxy- 5α -androstan-17-one and 16α , 17α -epoxy-androstane underwent alkoxycarbonylation with configuration inversion at the carbon atoms bearing the –COOR moiety.

Acknowledgements

The authors thank Z. Tuba and S. Mahó (Chemical Works of Gedeon Richter Ltd.) for the steroids and Prof. B. Heil for helpful discussions. This work was supported by the Hungarian National Science Foundation (OTKA Grant T034328 and T34355).

References

- Jacobsen EN. Asymmetric catalysis of epoxide ring-opening reactions. Acc Chem Res 2000;33:421–31.
- [2] Bartók M, Lang KL. Small ring heterocycles, Part 3. Hassner A, editor. New York: Wiley; 1985. p. 15–57.
- [3] Jörgensen KA. Transition-metal-catalyzed epoxidations. Chem Rev 1989;89:431–58.
- [4] Jacobsen EN. Transition metal catalyzed oxidations: asymmetric epoxidation. In: Wilkinson G, Stone FGA, Abel EW, Hegedus LS, editors. Comprehensive organometallic chemistry II, vol. 12. New York: Pergamon; 1995. p. 1097–135.
- [5] Hou X-L, Wu J, Dai L-X, Xia LJ, Tang MH. Desymmetric ring-opening of *meso*-epoxides with anilines: a simple way to chiral β-amino-alcohols. Tetrahedron Asymmetry 1998;9:1747–52.
- [6] Hinterding K, Jacobsen EN. Regioselective carbomethoxylation of chiral epoxides: a new route to enantiomerically pure β-hydroxy esters. J Org Chem 1999;64:2164–5.
- [7] Ready JM, Jacobsen EN. Asymmetric catalytic synthesis of β-aryloxy alcohols: kinetic resolution of terminal epoxides via highly enantioselective ring opening with phenols. J Am Chem Soc 1999;121:6086–7.

- [8] Wu J, Hou X-L, Dai L-X, Xia LJ, Tang MH. Enantioselective ring opening of *meso*-epoxides with thiols, catalyzed by chiral (salen)Ti(IV) complex. Tetrahedron Asymmetry 1998;9:3431–6.
- [9] Furrow ME, Schaus SE, Jacobsen EN. Practical access to highly enantioenriched C-3 building blocks via hydrolytic kinetic resolution. J Org Chem 1998;63:6776–7.
- [10] Piotti ME, Alper H. Carbonylation of alkynyl epoxides: synthesis of 5-hydroxy-2,3-dienoate esters and 2,3-dihydrofuran-3-ol derivatives. J Org Chem 1997;62:8484–9.
- [11] Knight JG, Ainge SW, Baxter CA, Eastman TP, Harwood SJ. Synthesis of δ-lactones from 2-alkynyl epoxides and 4-alkynyl-1,3dioxolan-2-ones by palladium catalyzed carbonylation and conjugate nucleophilic addition. J Chem Soc Perkin Trans 2000;1:3188–90.
- [12] Lee JT, Thomas PJ, Alper H. Synthesis of β-lactones by regioselective cobalt and Lewis acid catalyzed carbonylation of simple and functionalized epoxides. J Org Chem 2001;66:5424–6.
- [13] Drent E, Kragtwijk E. Eur Pat Appl 577206 (1994 March 30). Chem Abstr 1994;120:191517c.
- [14] Szabó P, Markó L, Bor G. Einfache Laboratoriumsmethode zur Herstellung von kristallinem Dicobaltoctacarbonyl. Chem Techn (Berlin) 1961;13:549–50.
- [15] Bor G. Infrared spectroscopic studies on metal carbonyl compounds-III. Spectrochim Acta 1963;19:1209–24.
- [16] Sedee AGJ, Vanhenegouwen GMB, Guijt W, Haasnoot CAG. Assignment of the H-1 and C-13 nuclear magnetic-resonance spectra of norethisterone using two-dimensional nuclear magnetic-resonance spectroscopy. J Chem Soc Perkin Trans II 1984;11:1755–9.
- [17] Croasmun WR, Carlson RMK. Two-dimensional NMR spectroscopy. Weinheim: VCH Publishers, Inc.; 1987. p. 387–424.
- [18] Brandes BD, Jacobsen EN. Regioselective ring opening of enantiomerically enriched epoxides via catalysis with chiral (salen)Cr(III) complexes. Synlett 2001;1013–16.
- [19] Mahadevan V, Getzler YDY, Coates GW. [Lewis acid]⁺[Co(CO)₄]⁻ complexes: a versatile class of catalysts for carbonylative ring expansion of epoxides and aziridines. Angew Chem Int Ed 2002; 41:2781–4.
- [20] Törös Sz, Gémes-Pécsi I, Heil B, Mahó S, Tuba Z. Synthesis of new formyl and aminomethyl steroids via homogeneous catalysis. J Chem Soc Chem Commun 1992;11:858–9.
- [21] Törös Sz, Heil B, Gálik G, Tuba Z. Hydroalkoxycarbonylation of androstene derivatives. Tetrahedron Lett 1992;33:3667–8.
- [22] Scönecker B, Tresselt D, Draffehn J, Ponsold K, Engelhardt G, Zeigan D, et al. ¹H-NMR-Untersuchungen. Konfigurationszuordnung von 16-Substituierten 17-Hydroxy-Steroiden. J Prakt Chem 1977; 319:419–31.
- [23] Haasnoot CAG, de Leeuw FAA, Altona C. The relationship between proton–proton NMR coupling constants and substituent electronegativities. I. An empirical generalization of the Karplus equation. Tetrahedron 1980;36:2783–92.
- [24] Sedee AGJ, van Henegouwen GMJ, Guijt W, Haasnot CAG. Conformational analysis of steroids in solution. J Org Chem 1985;50:4182– 7.