Reversible C–H activation of a $P^tBu^iBu_2$ ligand to reveal a masked 12 electron $[Rh(PR_3)_2]^+$ cation[†]

Laura J. Sewell, Adrian B. Chaplin, Joseph A. B. Abdalla and Andrew S. Weller*

Received 10th May 2010, Accepted 18th June 2010 First published as an Advance Article on the web 12th July 2010 DOI: 10.1039/c0dt00449a

 $[Rh(P'Bu^{i}Bu_{2})_{2}][BAr^{F}_{4}]$, formed by removal of H₂ from $[RhH_{2}(P'Bu^{i}Bu_{2})_{2}][BAr^{F}_{4}]$, is in rapid equilibrium between C-H activated Rh(III) isomers, but reacts as a masked 12-electron $[Rh(P'Bu^{i}Bu_{2})_{2}]^{+}$ Rh(I) cation.

The generation and stabilisation of vacant sites on metal centres is a necessary requirement for many catalytic processes mediated by transition metals. In particular, the role of low-coordinate, lowvalent, metal centres is central to many C–H and C–X activation processes.¹ We have recently reported on the synthesis of the formally 12-electron Rh(I) complex [Rh(PⁱBu₃)₂][BAr^F₄], **2**² [Ar^F = 3,5-(CF₃)₂C₆H₃], that undergoes oxidative addition reactions with aryl halides or H₂ and promotes dehydrocoupling of H₃B·NMe₂H *via* B–H activation.³ Complex **2** is generated by removal of H₂ from [Rh(H)₂(PⁱBu₃)₂][BAr^F₄] **1**, a complex that itself is formally 14-electron and has two supporting C–H agostic interactions, Scheme 1. Although trapping experiments using ligands such as C₆H₃F and ClCH₂CH₂Cl indicate a Rh(I) formulation for **2** we have been unable to obtain a definitive structure of this important compound due to extensive disorder in the solid-state.

Scheme 1 Anions not shown.

Reasoning that changing the phosphine subtly might enforce a different packing regime in the solid-state we targeted the synthesis of the P' $Bu^{i}Bu_{2}$ ligated complex: $[Rh(P'Bu^{i}Bu_{2})_{2}][BAr^{F}_{4}]$, 4. We find that in solution this complex is in rapid equilibrium between C–H activated Rh(III) isomers, but reacts as a masked⁴ 12-electron $[Rh(PR_{3})_{2}]^{+}$ Rh(I) cation (Scheme 2).

Addition of Na[BAr^F₄] to the new complex Rh(P'*Bu*ⁱBu₂)₂-(H)₂Cl (see ESI[†]) in C₆H₅F solution affords [Rh(H)₂(P'*Bu*ⁱBu₂)₂]-[BAr^F₄], **3**, in good isolated yield (71%). In the solid-state compound **3** crystallises with two independent cations in the unit cell, both of which are disordered equally over crystallographically imposed inversion centres, and have similar structural metrics.

Scheme 2 Anions not shown.

Fig. 1 Solid-state structure of one of the independent cations in the unit cell for **3**[‡]. Disordered components and $[BAr^{F}_{4}]^{-}$ anion are not shown. Thermal ellipsoids are given at the 30% probability level. Rh1–C7, 2.940(9) Å; Rh1–C3, 2.820(8) Å; Rh1–P1, 2.24(2) Å; Rh1–H0A, 1.457(11) Å; Rh1–H0B 1.448(11) Å; P1–C5–C6, 108.8(9)°; P1–C1–C2, 108.6(10) °; P2–C17–C18, 125.4(11)°; P2–C13–C14, 124.2(10)°.

Fig. 1 shows that they adopt a *trans* phosphine / *cis* dihydride arrangement of ligands which is completed by two agostic⁵ C– H interactions from isobutyl groups on the same phosphine, making the cation approximately C_s symmetric. This is different to the C₂-symmetric arrangement of the agostic interactions in 1, although the Rh1 ··· C bond distances, 2.940(9) and 2.820(8), are broadly similar [*viz.* 2.90(3), 2.891(5) Å in 1]. Although rather weak interactions, these distances reflect their location relative to the high *trans* influence hydride ligands. They are, however, strong enough to manifest themselves in more compressed Rh1– P–C angles for the ⁱBu groups involved in agostic bonding, *cf.* P1–C1–C2, 108.6(10)° versus P2–C17–C18, 125.4(11)°.

In solution at 298 K the cation in **3** is fluxional and adopts time-averaged symmetry that makes the phosphine ligands equivalent, as evidenced by the observation of one phosphine, two diasterotopic ⁱBu-group, and one hydride environment [δ -22.03,

Department of Chemistry, Inorganic Chemistry Laboratories, University of Oxford, Oxford, OX1 3QR, UK. E-mail: andrew.weller@chem.ox.ac.uk † Electronic supplementary information (ESI) available: Full experimental details and data for all the new complexes. CCDC reference numbers 776219 and 776220. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c0dt00449a

J(RhH) 47 Hz, J(PH) 13 Hz]. On cooling to 190 K this pattern is retained, and no high-field signals due to agostic CH₃ groups were observed. This data suggests that rapid exchange on the NMR timescale is occurring between free and agostic CH₃ groups (as found for 1²). On the IR timescale a broad stretch observed at 2671 cm⁻¹ is assigned to the agostic CH₃ groups.⁶ **3** is closely related to bis-phosphine and bis-*N*-heterocyclic carbene complexes of Rh(III) and Ir(III), as reported by Caulton⁶ and Nolan⁷ that show bis-agostic interactions.

Addition of tert-butylethene to 3 rapidly removes the hydrides to afford a new complex of empirical formula $[Rh(P^{t}Bu_{2})_{2}][BAr^{F_{4}}]$ 4 (51% isolated yield, quantitative by in situ NMR spectroscopy). Hydrogen loss is also promoted by vacuum, but this is much slower ($t_{\frac{1}{2}}$ ~15 h, 6 × 10⁻² mbar). As for 3, complex 4 crystallises with two independent cations in the unit cell, both of which are disordered equally over crystallographically imposed inversion centres. Fig. 2 shows the solid-state structure of one of these, that demonstrates ε-C-H activation of one of the ⁱBu groups to form a Rh(III)-metallacycle, Rh1-C3 2.151(15) Å.8,9 Two relatively close Rh1...C interactions from C7 and C15 (2.811(13) and 2.981(13) Å respectively) indicate supporting C-H agostic interactions (IR: 2684 cm⁻¹, vbr) similar to those observed in 3 and other Rh(III) and Ir(III) bis-agostic complexes.^{2,6,7} The Rh(III) coordination environment is completed by a hydride (confirmed by NMR spectrocopy) which was not located, but placed trans to the agostic interaction from C7 on the basis of a gap in the coordination sphere. In solution, the room temperature ¹H and ${}^{31}P{}^{1}H$ NMR spectra show broad resonances. Cooling to 173 K reveals four, closely related species by the observation of: four hydride resonances grouped around δ –22 that show coupling to ¹⁰³Rh [J(RhH) ~ 54 Hz]; at least 4 broad peaks between δ 0.25 and -0.34 (6 H total), assigned to agostic CH₃ groups;⁸ and four pairs of phosphine environments in the ${}^{31}P{}^{1}H$ NMR spectrum that show mutual trans ${}^{31}P{}^{-31}P$ coupling [J(PP) ~300 Hz] on a Rh(III) centre [J(RhP) ~115 Hz]. These low temperature data are consistent with the observed solid-state structure. We suggest that these isomers in solution differ in the position of C-H activation of the diastereomeric ⁱBu phosphine groups (e.g. C3, C4, see ESI for diagram[†]). The structure of **4** is in contrast to that suggested for **2**, in which no cyclometallation was indicated by NMR spectroscopy at low temperature. This facile cyclometallation⁹ on incorportation of a bulky tert-butyl group is directly connected to Shaw's "gemtert-butyl" effect,¹⁰ as well as the influence that steric bulk of a phosphine has on the interaction of C-H bonds with metal centres.6

The room temperature NMR data for **4** suggest a fluxional process is occurring, and although a Rh(II) complex in the solid-state and at low temperature, it reacts with H₂, NCMe and H₃B·NMe₃ as if a Rh(I) species: giving **3**, *trans*-[Rh(NCMe)₂(P'*Bu*ⁱBu₂)₂][BAr^F₄] **5** and [Rh(η²-H₃B·NMe₃)(P'*Bu*ⁱBu₂)₂][BAr^F₄] **6**³ respectively (Scheme 3). This suggests the fluxional process is one that rapidly equilibrates Rh(I) with Rh(III)-cyclometallated species by reversible H–C(sp³) bond cleavage. Others have previously observed such reactivity,^{4,9,11} notably Caulton and co-workers who reported that the 12-electron Rh(I) complex, [('Bu₂PCH₂SiMe₂)₂N]Rh, is in rapid equilibrium with a cyclometallated Rh(III) hydride. Unlike **2**, complex **4** does not promote C–X activation with aryl halides, which we suggest is due to the inability to form an intermediate Rh(I) η-complex prior to oxidative cleavage,² presumably due to

Fig. 2 Solid-state structure of one of the independent cations in the unit cell for **4**[‡]. Disordered components and $[BAr^{F}_{4}]^{-}$ anion are not shown. Thermal ellipsoids are given at the 30% probability level. The hydride ligand on Rh1 was not located (see text). Rh1–C3, 2.152(15) Å; Rh1–C7, 2.811(13) Å; Rh1–C15, 2.981(13) Å; Rh1–P1, 2.312(15) Å, Rh1–P2, 2.312(15) Å; P1–C1–C2, 106.9(12)°, P2–C13–C14, 116.3(11)°; P2–C17–C18, 117.3(10)°; P1–C5–C6, 116.1(11)°.

steric constraints. Consistent with this 4 does not form a benzene adduct, whereas 2 does form complexes with arenes.²

Acknowledgements

The EPSRC and University of Oxford are thanked for support. Dr Nick Rees for assistance with NMR experiments.

Notes and references

‡ Crystallographic data: **3**: C₅₆H₆₈BF₂₄P₂Rh, M = 1372.76, Triclinic, $P\bar{1}$ (Z = 2), a = 12.88050(10) Å, b = 13.05280(10) Å, c = 22.3154(2) Å, $\alpha = 103.1981(3)^{\circ}$, $\beta = 94.4213(4)^{\circ}$, $\gamma = 118.4125(4)^{\circ}$, V = 3136.24(4) Å³, T = 150(2) K, 26387 unique reflections [$R_{int} = 0.0193$]. Final $R_1 = 0.0560$ [$I > 2\sigma(I$)]. **4**: C₅₆H₆₆BF₂₄P₂Rh, M = 1370.75, Triclinic, $P\bar{1}(Z = 2)$, a = 12.9373(2) Å, b = 13.0919(2) Å, c = 22.2056(3) Å, $\alpha = 72.9625(7)^{\circ}$, $\beta = 85.6901(6)^{\circ}$, $\gamma = 60.4717(6)^{\circ}$, V = 3118.05(8), T = 150(2) K, 22967 unique reflections [$R_{int} = 0.0252$]. Final $R_1 = 0.0722$ [$I > 2\sigma(I$)]. Selected NMR data (CD₂Cl₂; **298** K; ¹H, **500** MHz; ³¹P{¹H}, **202** MHz): Compound 3: ¹H: δ 7.72 (br, 8H, BAr^F₄), 7.56 (br, 4H, BAr^F₄), 1.95–1.79 (m, 8H, ¹Bu{CH/CH₂}), 1.73–1.67 (m, 4H, ¹Bu{CH₂}), 1.16 (apparent t, 18H, J = 7, ¹Bu{Me}), 0.89 (d, 12H, ³J_{HH} = 6.5, ¹Bu{Me}), 0.81 (d, 12H, ³J_{HH} = 6.5, ¹Bu{Me}), -22.03 (dt, 2H, ¹J_{RhH} = 47.1, ²J_{PH} = 13.3, RhH). Selected ¹H{³¹P(³⁰56.9 pm]: δ -22.03 (d, 2H, $J_{RhH} = 47.1$, $g_{Rh} = 47.3$, $g_{Rh} = 47.4$, $g_{Rh} = 47.3$, $g_{Rh} = 47.3$, $g_{Rh} = 47.4$, $g_{Rh} = 47.3$, $g_{Rh} = 47.3$, $g_{Rh} = 47.3$, $g_{Rh} = 47.3$, $g_{Rh} = 47.4$, $g_{Rh} = 47.4$, $g_{Rh} = 47.3$, $g_{Rh} = 47.3$, $g_{Rh} = 47.4$, $g_{Rh} = 47.4$, $g_{Rh} = 47.3$, $g_{Rh} = 47.3$, $g_{Rh} = 47.4$, $g_{Rh} = 47.4$, $g_{Rh} = 47.3$, $g_{Rh} = 47.4$, $g_{Rh} = 47$

MS (C₄H₅F): m/z 509.2859 [M⁺] (calc. 509.2907). **Compound** 4: ¹H: δ 7.73 (br, 8H, BAr^F₄), 7.57 (br, 4H, BAr^F₄), 1.90–1.74 (m, 8H, ⁱBu{CH/CH₂}), 1.72–1.63 (m, 4H, ⁱBu{CH₂}), 1.14 (dd, 18H, J = 7.5, J = 7.3, ⁱBu{Me}), 1.00–(-0.80) (br, 24H, ⁱBu{Me}). ³¹P{¹H}: δ 64.5 (br). ¹H (173 K, selected **data**): δ 0.25–(-0.38) (at least 4 broad peaks @ 0.05, -0.04, -0.14, -0.25, 6H, ⁱBu{Me-agostic}), -22.00 (br d, J = 54.4, 0.63H, RhH), -22.15 (br d, $J \sim 50$, 0.03H, RhH), -22.83 (br d, J = 55.8, 0.06H, RhH), -23.04 (br d, J = 56.9, 0.28H, RhH). ³¹P{¹H} (173 K): δ 85.7 (dd, ²J_{PP} = 295, ¹J_{RhP} = 115, isomer 1), 83.9 (dd, ²J_{PP} = 296, ¹J_{RhP} = 114, isomer 2), 78.6 (dd, ²J_{PP} = 299, ¹J_{RhP} = 114, isomer 3), 69.8 (dd, ²J_{PP} = 298, ¹J_{RhP} = 116, isomer 4), 56.2 2 (dd, ²J_{PP} = 295, ¹J_{RhP} = 115, isomer 4), ~49.8 (assumed dd, obscured by isomers at 49.2 and 48.9, outer lines only visible, isomer 3), 49.2 (dd, ²J_{PP} = 296, ¹J_{RhP} = 114, isomer 2), 48.9 (dd, ²J_{PP} = 296, ¹J_{RhP} = 116, isomer 1). **ESI-MS (C₆H₅F)**: m/z 507.2760 [M⁺] (calc. 507.2750).

- (a) J. F. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books, New York, 2010; (b) T. E. Barder, S. D. Walker, J. R. Martinelli and S. L. Buchwald, J. Am. Chem. Soc., 2005, 127, 4685–4696; (c) F. Barrios-Landeros and J. F. Hartwig, J. Am. Chem. Soc., 2005, 127, 6944–6945.
- 2 T. M. Douglas, A. B. Chaplin and A. S. Weller, *Organometallics*, 2008, **27**, 2918–2921.
- 3 T. M. Douglas, A. B. Chaplin, A. S. Weller, X. Yang and M. B. Hall, J. Am. Chem. Soc., 2009, 131, 15440–15456.

- 4 A. Y. Verat, M. Pink, H. Fan, J. Tomaszewski and K. G. Caulton, Organometallics, 2008, 27, 166–168.
- 5 M. Brookhart, M. L. H. Green and G. Parkin, *Proc. Natl. Acad. Sci.* U. S. A., 2007, **104**, 6908–6914.
- 6 A. C. Cooper, E. Clot, J. C. Huffman, W. E. Streib, F. Maseras, O. Eisenstein and K. G. Caulton, J. Am. Chem. Soc., 1999, 121, 97–106.
- 7 N. M. Scott, R. Dorta, E. D. Stevens, A. Correa, L. Cavallo and S. P. Nolan, J. Am. Chem. Soc., 2005, 127, 3516–3526.
- 8 N. S. Townsend, A. B. Chaplin, M. A. Naser, A. L. Thompson, N. H. Rees, S. A. Macgregor, and A. S. Weller, *Chem. Eur. J.*, 2010, *in the press*. 10.1002/chem.201000554.
- 9 (a) M. Albrecht, *Chem. Rev.*, 2010, 110, 576–623; (b) F. Mohr, S. H. Privér, S. K. Bhargava and M. A. Bennett, *Coord. Chem. Rev.*, 2006, 250, 1851–1888.
- 10 B. L. Shaw, J. Am. Chem. Soc., 1975, 97, 3856-3857.
- 11 (a) J. Chatt and J. M. Davidson, J. Chem. Soc., 1965, 843–844; (b) N. P. Tsvetkov, M. F. Laird, H. J. Fan, M. Pink and K. G. Caulton, Chem. Commun., 2009, 4578–4580; (c) A. C. Albeniz, G. Schulte and R. H. Crabtree, Organometallics, 1992, 11, 242–249; (d) A. Y. Verat, M. Pink, H. J. Fan, B. C. Fullmer, J. Telser and K. G. Caulton, Eur. J. Inorg. Chem., 2008, 4704–4709; (e) M. A. Rankin, D. F. MacLean, R. McDonald, M. J. Ferguson, M. D. Lumsden and M. Stradiotto, Organometallics, 2009, 28, 74–83.