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Abstract: Short routes to chiral 2-substituted pyrrolidines based on
rhodium-catalyzed hydroformylations of allylamines and their N-
alkyl and N-acyl derivatives, which were prepared by asymmetric
allylic substitutions, are described. The outcome of the hydroformy-
lation reaction was controlled by the substituent at nitrogen, not by
the substituent at carbon. In the case of N-alkylallylamines in situ
reduction to the pyrrolidines occurred, with N-acyl derivatives
hemiaminals and with primary amines cyclic imines were formed.
Very short syntheses of (S)-nicotine and the alkaloid 225C are pre-
sented.

Key words: domino reactions, hydroformylation, pyrrolidines,
alkaloids, cyclizations

Over the last few years, the iridium-catalyzed allylic sub-
stitution has been developed into a tool for organic syn-
thesis that allows chiral allylamines to be prepared in
great variety with high enantioselectivity (Scheme 1).1

Given these compounds with tailor-made, readily remov-
able N-protection, they were used as starting compounds
of ring-forming reactions.2,3 We have now explored their
use as substrates of the hydroformylation reaction.4 In the
case of secondary amines 3 (cf. Scheme 1), the aldehydes
so produced undergo spontaneous cyclization, elimina-
tion, and sometimes also reduction, namely, a so-called
hydroaminomethylation. This sequence of reactions is
well known for the intermolecular case;5 intramolecular
reactions have been studied in particular with homoal-
lylamine derivatives yielding piperidines.6

Due to the starting materials, our work was directed at 2-
substituted pyrrolidines,7 particularly pyrrolidine alka-
loids and potential organocatalysts. One point of concern
was racemization, which is not possible for homoal-
lylamines, but could be marked with allylamines if the
hydroformylation reaction was reversible. Therefore,
enantiomeric excesses of starting materials and products
were carefully determined. Furthermore, the outcome of
the seemingly straightforward hydroformylation turned
out to be a function of subtle details of structure, catalyst,
and reaction conditions (cf. Scheme 1).8 For example, an
attempt to prepare nicotine via hydroformylation of the al-
lylamine 3d (R1 = 3-pyridyl, R2 = Me) met with complete
failure, because under standard conditions, using Xant-

phos or Biphephos (Figure 1) as ligands, mixtures of a
pyrrolidine of type C and a lactam of type D were formed.
This result was an incentive to study the hydroformylation
of allylamine derivatives in detail. As a result, very short
and selective syntheses of pyrrolidines of types A, C, and
E possessing high enantiomeric purity are now available
via hydroformylation.

The rhodium-catalyzed cyclization reactions were probed
with catalysts prepared from Rh(acac)(CO)2 and several
ligands; the best results were obtained with Xantphos and
Biphephos (Figure 1). These ligands have indeed previ-
ously given particularly good results with respect to the
n/iso ratio, which for 1-octene was 52:1 (Xantphos)9 and
40:1 (Biphephos).10 Biphephos has excelled in hydro-
formylations of a large variety of functionalized alkenes.
In our own screening experiments no superior ligand was
found.

Scheme 1 Products potentially formed by hydroformylation of an
allylamine

Figure 1 Ligands used for rhodium-catalyzed hydroformylation
reactions
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First, the N-benzyl- and N-(p-methoxyphenyl)methylal-
lylamines 3a–c, prepared by standard Ir-catalyzed allylic
amination,11 were probed using conditions published by
Eilbracht et al. (Scheme 2).12 The aforementioned in-
tramolecular hydroaminomethylation gave the 2-substi-
tuted pyrrolidines 4a–c in 57–72% yield. Careful
determination of the enantiomeric excess of the starting
materials and the products showed that racemization had
not occurred.13

Scheme 2 Domino hydroformylation–reductive amination

The substrate 3d, as was mentioned above, proved prob-
lematic. With Xantphos as ligand in a variety of experi-
ments the major product was the lactam cotinine (8d), also
a tobacco alkaloid (Scheme 3). This compound is presum-
ably formed via the rhodium complex 6 by b-H elimina-
tion. Lactams as hydroformylation products have
previously been observed.5b,6b

Scheme 3 Intermediates of the domino-hydroformylation–reduc-
tive amination

In order to accelerate the hydrogenation step, the partial
pressure of hydrogen was increased (H2/CO = 5:1). Fur-
thermore, the phosphite Biphephos was used as ligand,
which induces higher activity than Xantphos. This al-
lowed decrease of the reaction pressure (30 bar) and tem-
perature (50 °C). Under optimized conditions (B,
Scheme 4)14 (S)-nicotine (6d) was obtained in 61% yield,
not contaminated by cotinine, with 99% ee, that is, with-
out racemization. This route constitutes a very short syn-
thesis of (S)-nicotine.15,16

As second class of substrates N-sulfonyl- (3e,f) and N-
acyl-allylamines (3g–i) were investigated (Scheme 5).

These were prepared using salt-free conditions of the
Ir-catalyzed allylic substitution and partial N-deprotec-
tion.11c,17–19 The course of the hydroformylation of these
compounds, using slightly modified conditions A (cf.
Scheme 2), was different from that with N-alkyl-allyl-
amines (Scheme 5). Hemiaminals 9 were produced after
cyclization of the intermediary aldehydes.20 The isolated
yields of the hemiaminals 9 were good to excellent. Race-
mization did not occur. The hemiaminals were reduced
with TFA and HSiEt3 to give 2-substituted pyrrolidines 4
in yields of 51–87% (over two steps, Scheme 5).

Remarkably, hydroformylations of N-acyl-homoallyl-
amines in aprotic solvents, using Biphephos as ligand,
yield aldehydes or N-acyl-dehydropiperidines (i.e., enam-
ines), according to Ojima et al.6c,d These authors also re-
ported that elimination of water from corresponding
hemiaminals under acidic conditions is facile. Under the
same conditions, the hemiaminals 9 did not react. Thus,
the rate of elimination of water likely is the cause of the
differing reaction modes of N-alkyl- and N-acyl-allyl-
amines.

Scheme 4 Enantioselective synthesis of (S)-nicotine (preparation of
L* according to Alexakis et al.).21 The designations b and l refer to the
branched (3d) and linear product, respectively, of the allylic aminati-
on.

Scheme 5 Hydroformylation of N-sulfonyl- and N-acyl-allylamines
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Finally, N-unprotected primary allylamines were subject-
ed to the hydroformylation reaction (Scheme 6). Under
standard hydroformylation conditions [Xantphos, 60 bar,
H2/CO (1:1), CH2Cl2 or toluene, 80 °C, 24 h] conversion
was low. Under the conditions B optimized for nicotine
[Biphephos, 30 bar, H2/CO (5:1), CHCl3] the imines 10a
and 10b were formed in good yield; reductive amination
did not occur (GC-MS).22

Scheme 6 Hydroformylation–cyclization of primary allylamines

Hydrogenation of the imines 10 was carried out with
Rh/C as catalyst (methanol, r.t., 1 atm of H2). The enantio-
meric excess decreased slightly, from 98% (10a) to 96%
(11a, Scheme 6). In contrast, with Pd/C as catalyst under
otherwise identical conditions the ee decreased to 90%.

The cyclic imines 10 are of interest for syntheses of bio-
logically active compounds. We have used ent-10b for a
short synthesis of the alkaloid 225C [(+)-12], a constituent
of the venom of the fire-ant Solenopsis fugax.23  Introduc-
tion of the n-Bu group by addition of n-BuLi was an obvi-
ous route (Scheme 7). The addition of a nucleophile to an
imine generally requires the presence of an electron-with-
drawing N-substituent24 or addition of a Lewis acid.25 Fol-
lowing a procedure by Nakagawa et al.,25b a solution of
ent-10b in toluene was cooled to –78 °C, treated with
BF3×OEt2 (1.6 equiv) and then with n-BuLi (2 equiv, 1.6
M in n-hexane). The addition proceeded with a low dr of
66:34 (trans/cis). However, with diethyl ether as solvent
at –100 °C using n-BuLi, which was precooled26 to the
same temperature, an excellent dr of 95:5 resulted.

Scheme 7 Application of a cyclic imine in the synthesis of an alka-
loid

In summary, we present short routes to chiral 2-substitut-
ed pyrrolidines27 based on rhodium-catalyzed hydro-
formylations of allylamines, which were derived from
asymmetric allylic substitutions. The outcome of the
hydroformylation reaction was found to be controlled by
the nature of the substituent at nitrogen, fortunately not by
the substituent at carbon. In the case of N-alkylallyl-
amines in situ reduction to the pyrrolidines occurred, with
N-acyl derivatives hemiaminals and with primary amines

cyclic imines were formed. The insight gained allowed
very short syntheses of (S)-nicotine and the alkaloid 225C
to be carried out.
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