This article is published as part of the Dalton Transactions themed issue entitled:

New Talent

Showcasing the strength of research being carried out by tomorrow's leaders in the field of inorganic chemistry

Guest Editor Polly Arnold University of Edinburgh, UK

Published in issue 2, 2010 of Dalton Transactions

Image reproduced with permission of Mark Muldoon

Articles in the issue include:

PERSPECTIVES:

Modern multiphase catalysis: new developments in the separation of homogeneous catalysts Mark J. Muldoon, *Dalton Trans.*, 2010, DOI: 10.1039/b916861n

Probing bioinorganic chemistry processes in the bloodstream to gain new insights into the origin of human diseases

Elham Zeini Jahromi and Jürgen Gailer, Dalton Trans., 2010, DOI: 10.1039/b912941n

COMMUNICATIONS:

Facile entry to 3d late transition metal boryl complexes Ba L. Tran, Debashis Adhikari, Hongjun Fan, Maren Pink and Daniel J. Mindiola, *Dalton Trans.*, 2010, DOI: 10.1039/b912040h

Probing the kinetics of ligand exchange on colloidal gold nanoparticles by surface-enhanced raman scattering

Yuhua Feng, Shuangxi Xing, Jun Xu, Hong Wang, Jun Wei Lim and Hongyu Chen, *Dalton Trans.*, 2010, DOI: 10.1039/b912317b

Visit the *Dalton Transactions* website for more cutting-edge inorganic and organometallic research <u>www.rsc.org/dalton</u>

Electron rich bidentate phosphinimine-imine ligands: Synthesis and reactivity of late transition metal complexes[†]

Christopher J. Wallis, Ira L. Kraft, Brian O. Patrick and Parisa Mehrkhodavandi*

Received 30th June 2009, Accepted 28th August 2009 First published as an Advance Article on the web 25th September 2009

DOI: 10.1039/b912783f

Electron rich phosphinimine-imine proligands Ph₃PN(C₆H₄)C(Ph)(NAr) (L_{Ar}) (Ar = 4-(OEt)C₆H₄ (OEt), 3,5-Me₂C₆H₃(Xyl)) were synthesized in three steps from 2-aminobenzophenone. These compounds, along with previously reported L_{Mes} and L_{Tol} (Mes = 2,4,6-Me₃C₆H₂, Tol = 4-MeC₆H₄) were used to synthesize a series of tetracarbonyltungsten(0) complexes: L_{Mes}W(CO)₄ (1), L_{Tol}W(CO)₄ (2), L_{OEt}W(CO)₄ (3), and L_{Xyl}W(CO)₄ (4). The ligands were evaluated by analysis of the carbonyl stretching frequencies of the tungsten complexes and were shown to be better σ -donors and poorer π -acceptors compared to similar ligands in the literature. The coordination chemistry of the proligands was expanded to other late transition metals and L_{Mes}CoCl₂ (5), L_{Tol}CoCl₂ (6), L_{Mes}NiBr₂ (7), L_{Tol}NiBr₂ (8), L_{Mes}ZnCl₂ (9), and L_{Tol}ZnCl₂ (10) were synthesized by the direct reaction of L_{Mes} and L_{Tol} with the respective metal dihalide precursors. The complexes were fully characterized and the molecular structures of complexes 3, 6, 7, and 10 were reported. The synthesis of zinc complexes 9 and 10 was dependent on the steric bulk of the ligand. Complex 10 proved to be resistant to derivatization *via* a number of routes.

Introduction

In the last decade the chemistry of bidentate phosphinimine ligands has expanded to encompass early¹ and late² transition metals as well as main group elements and a variety of transformations involving these compounds have been reported.³ Bisphosphinimine complexes of rhodium and palladium incorporating a ferrocene backbone have shown interesting reactivity and catalytic behaviour.² Phosphinimines derived from 1,1-diphosphinomethanes have been used to generate carbenoids for a variety of metals.⁴ Bidentate phosphinimine-donor systems incorporating pyridine, imidazole,⁵ and pyrazole⁶ donor moieties, and a tridentate bisphosphinimine-pyridine⁷ system have also been studied and in most cases their activity in ethylene polymerization⁸ was investigated. Orthopalladation of phosphinimines offers a facile route to asymmetric pincer complexes and has been studied in some detail.⁹

We have recently reported palladium complexes bearing bidentate phosphinimine-imine ligands and elucidated a method for their orthopalladation and the direct and controlled reverse reaction.¹⁰ In the context of our work with phosphinimine ligands, as well as our efforts to develop catalysts for the controlled polymerization of lactide,¹¹ we were inspired by reports of cationic zinc catalysts supported by bidentate phosphinimines for polymerization of lactide.¹² In this report we present our investigations into expanding the family of phosphinimine-imine proligands, probe their electronic properties *via* synthesis of carbonyl complexes, evaluate their viability as ligands for late transition metals, and ultimately investigate the synthesis and reactivity of their zinc complexes.

Results and discussion

Tunable bidentate phosphinimine-imine ligands

We have reported a facile and modular route for the synthesis of a family of proligands $Ph_3PN(C_6H_4)C(Ph)(NAr)$ (L_{Ar}) with a range of steric and electronic characteristics.¹⁰ The reported compounds, L_{Mes} and L_{Tol} (Mes = 2,4,6-Me₃C₆H₂, $Tol = p-MeC_6H_4$) and the new compounds L_{OEt} and L_{XVI} $(OEt = p-(OEt)C_6H_4, Xyl = 3,5-Me_2C_6H_3)$ are synthesized in four steps from 2-aminobenzophenone via a 2-(triphenylphosphinimine)benzophenone intermediate (Scheme 1). The imine moieties are installed via condensation reactions of this intermediate with *p*-ethoxy and 3,5-dimethylanilines to yield L_{OFt} and L_{xyl} as air and moisture stable yellow solids in 85 and 81% yield, respectively. The condensation reaction is more facile with less hindered anilines: L_{Tol} and L_{OEt} are synthesized in 24 h, while L_{xyl} and L_{Mes} require 48 h reaction time with a Dean-Stark apparatus. We reported that the molecular structure of L_{Mes} shows hindered rotation around the N-Ar bond and in solution two magnetically nonequivalent ortho methyl groups are observed in the ¹H NMR spectrum.¹⁰ A similarly hindered rotation is not observed for L_{OEt} or L_{Xyl} ; the ¹H NMR spectrum of L_{OEt} does not show asymmetric -OCH₂CH₃ protons and only one signal

Scheme 1

University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, B.C., Canada. E-mail: mehr@chem.ubc.ca; Tel: 604-822-1882 † CCDC reference numbers 738462–738465. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b912783f

Entry	Compound	³¹ P{ ¹ H} (ppm)	(cm^{-1})	$v_{\rm CO} ({\rm cm}^{-1})$			
1	L _{Mes}	1.16	1339				
2	L _{Tol}	0.87	1360				
3	L _{OEt}	1.64	1345				
4	L_{Xyl}	2.18	1328				
5 ^a	$Ph_2PCH_2(Ph)_2P=N(SiMe_3)$	-1.38	1310				
6	1	27.36	1228	1994, 1870,			
				1845, 1808.			
7	2	25.34	1242	1996, 1870,			
				1846, 1805.			
8	3	28.6	1231	1995, 1879,			
				1852, 1802.			
9	4	25.09	1241	1998, 1874,			
				1842, 1808.			
10^a	$Ph_2PCH_2(Ph)_2P=N(SiMe_3)W(CO)_4$	40.02	1120	2007, 1920,			
				1884, 1866.			
11 ^b	TerpyridineW(CO) ₄			2008, 1990,			
12 ^e	2,2'-BiquinolineW(CO) ₄			1891, 1842.			
				2005, 1920,			
	_			1870, 1812.			
13	5		1238				
14	6		1234				
15"	Pyridine-phosphinimineCoCl ₂		1260				
16	7		1241				
17	8		1246				
18 ^a	Pyridine-phosphinimineNiBr ₂		1280				
19"	Imidazole-phosphinimineNiBr ₂		1225				
20	y 10		1241				
21	10		1238				
^{<i>a</i>} ref. 1a ^{<i>b</i>} ref 13. ^{<i>c</i>} ref 14 ^{<i>d</i>} ref 5.							

is observed for the meta-CH₃ groups of L_{xyl} . The ³¹P{¹H} NMR spectra of L_{OEt} and L_{xyl} show singlets at 1.4 and 2.1 ppm and the IR spectra show characteristic v_{PN} stretches of 1345 and 1328 cm⁻¹. Although the values are similar for all the proligands, there is a 32 cm⁻¹ difference between L_{Tol} and L_{xyl} which may indicate conjugation in the molecules affected by slight changes in the aryl substituent (Table 1, entries 1-4).^{1a} Despite being sterically unhindered, the newly synthesized proligands have the advantage of being air and moisture stable (L_{Tol} is air and moisture sensitive).

Tetracarbonyltungsten complexes

We probed the electronic properties of the L_{Ar} proligands by studying the corresponding tungsten tetracarbonyl complexes. Complexes $L_{Ar}W(CO)_4$ (Ar = Mes (1), Tol (2), OEt (3), Xyl (4)) were synthesized by refluxing a THF solution of the desired proligand L_{Ar} with (THF)W(CO)₅ for 18 h and were isolated as red air and moisture stable solids. The ³¹P{¹H} NMR spectra of 1–4 show a characteristic signal at ~28 ppm indicative of coordinated phosphinimine. The IR spectra of 1–4 show characteristic ~100 cm⁻¹ decreases in v_{PN} compared to the free ligands indicating a decrease in the P–N bond order (Table 1, entries 6– 9). There are no significant differences in the v_{CO} values of 1–4, which are some of the lowest reported for bidentate nitrogen-based donor ligands on tetracarbonyltungsten(0) moieties (*cf*. Table 1, entries 10–12).^{13,14} This suggests that the L_{Ar} ligands exhibit strong σ -donor and unusually poor π -acceptor characteristics.

The differences in the steric bulk imparted by the ligands are clearly seen by comparing the ${}^{1}H$ NMR spectra of the respective

complexes. Complex 1 shows restricted rotation of the mesityl imine moiety as observed in L_{Mes} . The two inequivalent *ortho* methyl groups are observed at 1.82 and 2.50 ppm. In contrast the xylyl derivative 4, which shows no sign of hindered rotation in the free ligand, shows two inequivalent peaks for the *meta* methyl groups at 2.06 and 2.29 ppm. The less sterically encumbered complexes 2 and 3 show no signs of hindered rotation upon coordination to the tetracarbonyltungsten(0) moiety.

The molecular structure of **3**, obtained *via* single crystal X-ray crystallography, shows distorted octahedral geometry around the tungsten centre (Fig. 1, Table 2).¹⁵ The strained geometry of the ligand is apparent in the twist in the ligand backbone and in the N1–W–N2 bond angle of 76.2°, the W–N2–C1–C6 torsion angle of 8.5°, and the C1–C6–C7–N2 torsion angle of 42.1°. The W–N1 and W–N2 bond lengths are identical (2.260 Å) and are consistent with literature values.^{14,16}

Fig. 1 Molecular structure of **3** (depicted with 35% probability ellipsoids, H atoms are omitted for clarity). Selected bond distances (Å) and angles (°): P(1)-N(1) = 1.606(5); N(1)-W(1) = 2.260(4); N(2)-W(1) = 2.260(4); C(23)-W(1) = 1.944(7); C(24)-W(1) = 1.952(6); N(2)-W(1)-N(1) = 76.21(16); N(1)-W(1)-C(23) = 171.3(2); N(2)-W(1)-C(24) = 173.5(2); C(23)-W(1)-C(24) = 87.6(3).

Cobalt and nickel complexes of L_{Mes} and L_{Tol}

The L_{Ar} proligands are versatile supports for late transition metals. Dichlorocobalt(II) complexes, $L_{Mes}CoCl_2$ (5) and $L_{Tol}CoCl_2$ (6), were synthesized by the reaction of L_{Mes} or L_{Tol} with anhydrous $CoCl_2$ in THF at room temperature and isolated as paramagnetic air and moisture stable green solids (Scheme 3). The μ_{eff} for 5 and 6 were measured using a magnetic susceptibility balance and calculated to be 5.32 µB and 4.26 µB respectively.⁵ The v_{PN} stretching frequencies of 5 and 6 are consistent for coordinated phosphinimines (Table 1, entries 13, 14). The molecular structure of 6 shows a pseudo-tetrahedral geometry with Co–N1 phosphinimine and Co–N2 imine bond lengths of 2.012(1) Å and 2.035(1) Å respectively and are comparable to those of a similar dichlorocobalt(II) complex (Fig. 2).⁵

Dibromonickel(II) complexes $L_{Mes}NiBr_2$ (7) and $L_{Tol}NiBr_2$ (8) were synthesized by reaction of L_{Mes} or L_{Tol} with Ni(DME)Br₂ in CH₂Cl₂ at room temperature and were isolated as paramagnetic air and moisture stable blue solids with μ_{eff} values of 3.51 and 2.24 µB respectively (Scheme 2).⁵ The IR spectra of 7 and 8 show

	$L_{OEt}W(CO)_4$ (3)	$L_{\text{Tol}}\text{CoCl}_{2}\left(\boldsymbol{6}\right)$	$L_{Mes}NiBr_2$ (7)	$L_{Tol}ZnCl_2$ (10)
empirical formula	$C_{46}H_{39}N_2O_5PCl_6W$	C ₃₈ H ₃₁ N ₂ PCl ₂ Co	C41H37N2PCl2Br2Ni	$C_{39}H_{33}N_2PCl_4Zn$
fw	1127.31	676.45	878.13	767.81
$T(\mathbf{K})$	173	173	173	173
$a(\mathbf{A})$	12.1621(6)	10.935(4)	21.2062(12)	12.3640(9)
$b(\mathbf{A})$	13.8626(7)	13.014(3)	13.2498(7)	17.4916(14)
c(Å)	15.8963(13)	13.330(4)	13.7667(8)	16.9571(13)
α (°)	101.352(4)	118.200(10)	90	90
$\beta(\circ)$	102.052(4)	94.80(2)	90	99.222(3)
γ (°)	112.080(3)	95.250(10)	90	90
volume (Å ³)	2314.0(2)	1647.3(8)	3868.1(4)	3619.8(5)
Z	2	2	4	4
crystal system	triclinic	triclinic	orthorhombic	monoclinic
space group	P -1	P -1	$P na2_1$	$P 2_1/n$
$d_{\rm calc}$ (g/cm ³)	1.618	1.364	1.508	1.409
μ (MoK α) (cm ⁻¹)	29.24	7.61	27.79	10.49
$2\theta_{\rm max}$ (°)	55.0	46.8	55.8	56.0
absorption correction (T_{\min}, T_{\max})	0.483, 0.704	0.788, 0.846	0.642, 0.846	0.762, 0.837
total no. of reflections	39908	26521	42494	42130
no. of indep reflections (R_{int})	10320 (0.037)	7653 (0.039)	9177 (0.043)	8741 (0.036)
residuals (refined on F^2 , all data): R_1 ; wR_2	0.058; 0.126	0.037; 0.072	0.044; 0.055	0.047; 0.081
GOF	1.06	1.03	0.98	1.03
no. observations $[I > 2\sigma(I)]$	9053	6505	7601	7001
residuals (refined on F): R_1 ; wR_2	0.047; 0.118	0.028; 0.068	0.029; 0.052	0.031; 0.074

Scheme 2

characteristic v_{PN} stretching frequencies (Table 1, entries 16, 17). The molecular structure of 7 shows a slightly distorted tetrahedral geometry, with identical Ni–N(1) and Ni–N(2) bond lengths of 1.997(2) Å comparable to those of similar phosphinimine dibromonickel(II) complexes.⁵

Scheme 4 In reactions with $L_{\mbox{\tiny Mes}}$ a saturated solution is required to form 10

Zinc complexes of L_{Mes} and L_{Tol}

Previously, we have described the significant effects of ligand sterics on the orthopalladation of L_{Mes} and L_{Tol} .¹⁰ In studying the analogous zinc complexes we again observe a significant difference in reactivity based on ligand sterics. The dichlorozinc complexes $L_{Mes}ZnCl_2$ (9) and $L_{Tol}ZnCl_2$ (10) were synthesized by reaction of L_{Mes} or L_{Tol} with anhydrous ZnCl₂ in THF at room temperature (Scheme 4). Complex 9 was isolated as an air and moisture stable pale yellow solid with a signature ${}^{31}P{}^{1}H$ NMR peak at 29 ppm. Interestingly, the ¹H NMR spectrum of **9** shows only one signal at 2.02 ppm for the *ortho* methyl groups on the mesityl moiety indicating fast rotation at room temperature on the NMR time scale. As discussed above, in the proligand L_{Mes} , tungsten complex 1, and the previously reported palladium analogue we observed restricted rotation of the aryl group. Likely, in 9 the tetrahedral geometry of the complex allows for a less hindered system and free rotation of the mesityl moiety.

Control of the reaction conditions is very important in obtaining complex **9** in pure form. Only a minimum amount of THF must be used to induce the complex to precipitate upon formation. If the complex remains soluble when stirred overnight at room temperature, secondary peaks are observed in the ¹H and ³¹P{¹H} NMR spectra of the isolated yellow material.

Synthesis of the tolyl derivative $L_{Tol}ZnCl_2$ (10) was carried out without similar complications to yield air and moisture stable yellow solid. Complex 10 is insoluble in THF and thus precipitated out of solution upon reaction. The ³¹P{¹H} NMR spectrum of 10 shows a characteristic signal at 27 ppm and the ¹H NMR spectrum shows the tolyl CH₃ protons as a singlet at 2.30 ppm. The v_{PN} of 1238 cm⁻¹ is consistent with other compounds in the series (Table 1, entry 21). The molecular structure of 10, obtained *via* single crystal X-ray crystallography, shows distorted tetrahedral geometry around the zinc centre (Fig. 2). A comparison of the structural parameters for 6, 7 and 10 shows no major differences between the three structures in terms of bond lengths or bond

Fig. 2 Molecular structures of 6 (top), 7 (middle) and 10 (bottom) (depicted with 35% probability ellipsoids, H atoms are omitted for clarity).

angles around the metal centre (Table 3). It is worth noting that in complex **10** the Zn–Cl bond lengths differ by 0.05 Å, perhaps due to amplified steric differences around the smaller zinc centre.

 Table 3
 Structural details for complexes 6, 7, and 10
 Ar -Ń2 6: M = Co: Ar = Tol: X = Cl 7: M = Ni; Ar = Mes; X= Br 10: M = Zn; Ar =Tol; X = Cl Ph₃F 7 10 6 Bond lengths (Å) C1-N2 1.294(2)1.286(3)1.292(2)P-N1 1.609(1)1.619(2)1.6079(14) 1.997(2) M-N1 2.012(1)2.0212(14) M-N21.997(2) 2.0587(14) 2.035(1)M-X12.2289(8) 2.3854(4) 2.2462(5) M-X2 2.2259(7)2.3429(4)2.1929(5)Bond angles (°) 91.42(5) 89.81(9) 88.04(6) N1-M-N2 103.82(4)N1-M-X1117.64(4) 103.08(5)

108.71(4)

116.35(3)

113.06(6)

119.40(2)

117.13(4)

114.83(2)

The dichlorozinc complex $L_{Tol}ZnCl_2$ (10) proved to be resistant to further derivatization. Attempts to form alkoxy, alkyl, or amido derivatives of 10 were unsuccessful. Reaction of 10 with 2 equiv. NaOEt in THF either at room temperature or at -10 °C forms pale yellow solutions with one ³¹P{¹H} NMR signal at 1 ppm, suggesting that the phosphinimine moiety is no longer coordinated. The ¹H NMR spectrum shows peaks in the aromatic region near 8.2 ppm and characteristic signals for a coordinated THF molecule are observed at 3.56 and 1.42 ppm. This spectrum is not consistent with either the free ligand or complex 10 and may be indicative of dissociation of the phosphinimine moiety while the imine remains attached. Similar results were observed when only one equiv. of NaOEt was used. When the reaction was carried out at room temperature or in refluxing CH2Cl2, CHCl3 or CH3CN the result was unreacted starting material. Addition of MeMgBr to complex 10 in THF at -10 °C forms a pale yellow solution followed by formation of a precipitate after the reaction mixture has been stirred at room temperature overnight. The ³¹P{¹H} and ¹H NMR spectra of the solution are consistent with free ligand. Reaction of complex 10 with 1 equiv. of KN(TMS)₂ at -10 °C in THF followed by overnight stirring at room temperature resulted in a pale yellow solution with the NMR characteristics of a complex with dissociated phosphinimine moiety and a coordinated imine. These compounds were not isolable. The reaction of L_{Tol} with Zn(N(TMS)₂)₂ yielded only free ligand.

Conclusions

N2-M-X2

X1-M-X2

We have synthesized a family of bidentate phosphinimine-imine proligands with different aryl groups on the imine moiety which can easily be changed to tune the electronic or steric requirements upon coordination to metal centres. Coordination of the proligands to a tetracarbonyltungsten(0) fragment formed complexes 1–4 which exhibit some of the lowest v_{co} stretching frequencies for compounds of this type, suggesting that the L_{Ar} system is

predominately σ -donating with minimal π -acceptor capability. The differences in steric bulk imparted by the ligand systems was demonstrated by the hindered rotation around the N–Ar bond for the bulkier mesityl and xylyl derivatives, **1** and **4**.

We explored the reactivity of the L_{Ar} proligands with late transition metals and showed that, despite the lack of π -acceptor capability, they were able to form the dichlorocobalt(II) (5, 6), dibromonickel(II) (7, 8) and the dichlorozinc(II) complexes (9, 10) *via* reactions with dihalide metal precursor at room temperature. In the case of the mesityl derivative 9 the reaction conditions are vital, as the utilization of too much solvent prevents the product from precipitating and leads to the formation of impurities. Complex 10 resisted all our attempts at derivatization and was either inert under the studied reaction conditions, released free ligand, or formed intractable decomposition products. We can only conclude that these bulky ligands are not effective in stabilizing neutral Zn(II) alkoxide, alkyl or amide complexes. Investigations are currently underway to produce cationic analogues as potential catalysts for the ring opening polymerization of cyclic esters.

Experimental

General procedure

Unless otherwise specified all procedures were carried out using standard Schlenk techniques. A Bruker Avance 300 MHz spectrometer and Bruker Avance 400dir MHz spectrometer were used to record the ¹H NMR, ¹³C{¹H} NMR, and ³¹P{¹H} NMR spectra. ¹H NMR chemical shifts are given in ppm versus residual protons in deuterated solvents as follows: δ 5.32 for CD₂Cl₂, and δ 7.27 for CDCl₃. ¹³C{¹H} NMR chemical shifts are given in ppm versus residual ¹³C in solvents as follows: δ 54.00 for CD₂Cl₂, and δ 77.23 for CDCl₃. ³¹P{¹H} NMR chemical shifts are given in ppm versus 85% H₃PO₄ set at 0.00 ppm. A Waters/Micromass LCT mass spectrometer equipped with an electrospray (ESI) ion source and a Kratos-50 mass spectrometer equipped with an electron impact ionization (EI) source were used to record low-resolution and high-resolution spectra. A Nicolet 4700 FT-IR spectrometer was used to record infrared spectra. Magnetic susceptibility measurements were made with a Johnson Matthey magnetic susceptibility balance.¹⁷ All measurements for X-ray crystallographic data were made on a Bruker X8 APEX diffractometer with graphite monochromated Mo-Ka radiation.

All solvents were degassed and dried using 3 Å molecular sieves in an mBraun Solvent Purification System. The THF was further dried over Na and distilled under N₂. CD₂Cl₂ and CDCl₃ were dried over CaH₂ and degassed through a series of freeze-pumpthaw cycles. Ni(DME)Br₂ and W(CO)₆ were purchased from Strem Chemicals and used without further purification. W(CO)₅THF was made by the UV photolysis of a THF solution of the desired amount of W(CO)₆ for 4 h. Anhydrous CoCl₂.¹⁸ L_{Mes}, and L_{Tol} were made *via* literature procedures.¹⁰ All other chemicals were obtained from Aldrich and used without further purification.

(Ph)₃PN(C₆H₄)C(Ph)(=N(4-OEtC₆H₅)), L_{OEt} . A round bottom flask was charged with a spatula head of *p*-toluidinesulfonic acid (0.1–0.2 g), 2-(triphenylphosphinimine)benzophenone (2.0 g, 4.6 mmol), *p*-phenetidine (0.63 g, 4.6 mmol), and toluene (50 mL). A standard Dean–Stark apparatus topped with a Dryrite drying column was assembled, and the reaction mixture was refluxed for

24 h. Ether was added to the resulting dark yellow solution to precipitate a bright yellow solid. The solid was filtered and then dried in vacuo, yielding LOEt as a pale yellow solid, which was recrystallized from CH₂Cl₂ (2.25 g, 85%). ¹H NMR (300.1 MHz; CDCl₃): δ 1.35 (t, J_{H-H} = 7.0 Hz, 3H, OCH₂CH₃); 3.91 (q, J_{H-H} = 6 Hz, 2H, OC H_2 CH₃); 6.37 (d, $J_{H-H} = 8.4$ Hz, 1H, Ar-H); 6.57-6.49 (m, 5H, Ar-H); 6.92-6.80 (m, 4H, Ar-H); 7.41-7.27 (m, 8H, Ar-H); 7.59–7.46 (m, 8H, Ar-H); 7.90–7.87 (m, 2H, Ar-H). ¹³C{¹H} NMR (100.6 MHz; CD₂Cl₂): δ 15.33 (s, OCH₂CH₃); 63.93 (s, OCH2CH3); 114.40 (s, CH); 116.00 (s, CH); 121.27 (d, $J_{CP} = 10.4$ Hz, CH); 122.50 (s, CH); 128.35 (s, CH); 128.87 (s, CH); 129.00 (s, CH); 129.13 (s, CH); 130.09 (s, CH); 130.88 (s, C); 131.87 (s, C); 132.21 (d, $J_{C-P} = 2.6$ Hz, CH); 132.91 (s, CH); 133.00 (s, CH) 141.17 (s, C); 146.16 (s, C); 150.49 (s, C); 155.67 (s, C); 170.80 (s, C). ³¹P{¹H} NMR (121.5 MHz; CDCl₃): δ 1.64 (s). IR (Nujol[®], cm⁻¹): 1622 (v_{CN}), 1345 (v_{NP}). MS (ESI, m/z): Calc. Mass: 577.2390; Obs. Mass: 577.2409 (M+). Anal. Calcd for C₃₉H₃₃N₂OP (576.67): C, 81.23; H, 5.77; N, 4.86. Found: C, 81.14; H, 5.77; N, 4.86.

 $(Ph)_{3}PN(C_{6}H_{4})C(Ph)(=N(3,5-Me_{2}C_{6}H_{4})), L_{xyl}.$ The proligand L_{xyl} was synthesised in an identical manner to L_{OEt} , except 3,5-dimethylaniline (0.56 g, 4.6 mmol) was used instead of 2,4,6trimethylaniline, and the reaction was refluxed for 48 h. The reaction yielded L_{Xv1} as a yellow solid (2.09 g, 81%). ¹H NMR (300.1 MHz; CDCl₃): δ 2.08 (s, 6H, CH₃); 6.31 (d, ${}^{3}J_{H-H} = 6$ Hz, 1H, *p*-NCC₆ H_5); 6.50 (t, ${}^{3}J_{H-H} = 5.7$ Hz, 2H, *m*-NCC₆ H_5); 6.63 (s, 2H, Ar-H); 6.85-6.77 (m, 2H, Ar-H); 7.37-7.27 (m, 10H, Ar-H); 7.46 (t, $J_{H-H} = 5.7$ Hz, 3H, Ar-H); 7.57–7.55 (m, 5H, Ar-H); 7.88 (d, ${}^{3}J_{\text{H-H}}$ = 6 Hz, 2H, *o*-NCC₆H₅). ${}^{13}C{}^{1}H{}$ NMR (100.6 MHz; CD₂Cl₂): δ 21.63 (s, Ar-*m*-CH₃); 116.82 (s, CH); 118.66 (s, CH); 121.08 (s, CH); 124.93 (s, CH); 128.34 (s, CH); 128.88 (s, CH); 129.01 (s, CH); 129.13 (s, CH); 130.19 (s, CH); 130.86 (s, C); 131.85 $(s, C); 132.19 (d, J_{C-P} = 2.7 Hz, CH); 132.91 (s, CH); 133.00 (s, CH);$ 138.11 (s, C); 140.91 (s, C); 150.39 (s, C); 153.19 (s, C); 170.65 (s, C). $^{31}P{^{1}H} NMR (121.5 MHz; CDCl_3): \delta 2.18 (s). IR (Nujol(R), cm^{-1}):$ 1623 (v_{CN}), 1328 (v_{NP}). MS (ESI, m/z): Calc. Mass: 561.2476; Obs. Mass: 561.2460 (M⁺). Anal. Calcd for C₃₉H₃₃N₂P (560.67): C, 83.55; H, 5.93; N, 5.00. Found: C, 83.10; H, 5.89; N, 4.98.

 $(Ph)_{3}PN(C_{6}H_{4})C(Ph)(=N(2,4,6-Me_{3}C_{6}H_{2}))W(CO)_{4}, L_{Mes}W (CO)_4$ (1). A solution of tungsten pentacarbonyl (0.20 g, 0.57 mmol) in THF, (15 ml) was added to a suspension of the proligand L_{Mes} (0.18 g, 0.57 mmol) in THF (10 ml). The reaction mixture was refluxed for 18 h yielding a crimson solution. The solution was concentrated, and diethyl ether (10 ml) was added to precipitate a brown solid. Filtration and drying in vacuo yielded complex 1 as a reddish-brown solid, (0.28 g, 58%). ¹H NMR (300.1 MHz; CD_2Cl_2): δ 1.82 (s, 3H, CH_3); 2.17 (s, 3H, CH_3); 2.50 (s, 3H, CH₃); 6.50 (s, 1H, Ar-H); 6.79–6.59 (m, 3H, Ar-H); 6.88–6.82 (m, 2H, Ar-H); 7.06 (d, $J_{\text{H-H}} = 9.0$ Hz, 2H, Ar-H); 7.33-7.20 (m, 3H, Ar-H); 7.71-7.58 (m, 10H, Ar-H); 7.97-7.90 (m, 6H, Ar-H). ¹³C{¹H} NMR (100.6 MHz; CD₂Cl₂): δ 19.66 (s, o-CH₃); 19.94 (s, o-CH₃); 21.00 (s, p-CH₃); 120.50 (s, CH); 124.11 (d, $J_{C-P} = 10.4$ Hz, CH); 126.25 (s, CH); 128.83 (s, CH); 129.33 (s, CH); 129.40 (s, CH); 129.45 (s, CH); 129.78 (s, CH); 130.22 (s, CH); 131.11 (s, CH); 133.65 (d, $J_{C-P} = 2.75$ Hz, CH); 134.25 (s, C); 134.86 (s, C); 135.51 (s, C); 135.60 (s, C); 138.14 (s, C); 149.36 (s, C); 154.53 (s, C); 173.72 (s, C); 204.46 (s, CO); 204.71 (s, CO); 212.07 (s, CO); 215.76 (s, CO). ³¹P{¹H} NMR (121.5 MHz; CDCl₃): δ 27.36 (s). IR (Nujol®, cm⁻¹): 1994 (v_{co}), 1870 (v_{co}), 1845 (v_{co}), 1808 (v_{co}), 1550 (v_{cN}), 1228 (v_{NP}). MS (ESI, m/z): 842.0 ((M – CO)⁺). Anal. Calcd for C₄₄H₃₅N₂O₄PW (870.57): C, 60.70; H, 4.05; N, 3.22. Found: C, 61.12; H, 4.24; N, 3.25.

 $(Ph)_3PN(C_6H_4)C(Ph)(=N(4-MeC_6H_4))W(CO)_4, L_{Tol}W(CO)_4$ (2). Complex 2 was synthesised in an identical manner to complex 1 using the proligand L_{Tol} (0.31 g, 0.57 mmol) instead. Complex 2 was isolated as a brown solid, (0.34 g, 70%). ¹H NMR (300.1 MHz; CD₂Cl₂): δ 2.23 (s, 3H, CH₃); 6.68–6.65 (m, 4H, Ar-H); 6.77 (dt, J_{H-H} = 8.4, 1.8 Hz, 2H, Ar-H); 6.90 (td, J_{H-H} = 8.7 Hz, 1.8, 2H, Ar-H); 7.28-7.04 (m, 7H, Ar-H); 7.69-7.55 (m, 8H, Ar-H); 7.97–7.90 (m, 5H, Ar-H). ¹³C{¹H} NMR (100.6 MHz; CD₂Cl₂): δ 21.13 (s, CH₃); 120.93 (s, CH); 124.05 (d, J_{C-P} = 10.7 Hz, CH); 126.37 (s, C); 127.37 (s, C); 128.25 (s, CH); 129.00 (s, CH); 129.38 (s, CH); 129.46 (s, CH); 129.59 (s, CH); 130.72 (s, CH); 131.53 (s, CH); 133.66 (d, $J_{C-P} = 2.7$ Hz, CH); 134.18 (s, C); 134.99 (s, CH); 135.08 (s, CH); 138.05 (s, C); 152.27 (s, C); 154.51 (s, C); 174.44 (s, C); 204.23 (s, CO); 205.79 (s, CO); 214.18 (s, CO); 216.46 (s, CO). ${}^{31}P{}^{1}H{}$ NMR (121.5 MHz; CD₂Cl₂): δ 25.34 (s). IR (Nujol[®]), cm⁻¹): 1996 (v_{co}), 1870 (v_{co}), 1846 (v_{co}), 1805 (v_{CO}), 1553 (v_{CN}), 1242 (v_{NP}). MS (ESI, m/z): 814.2 ((M -CO)⁺). We were not able to purify this compound.¹⁹

 $(Ph)_3PN(C_6H_4)C(Ph)(=N(4-OEtC_6H_4))W(CO)_4, L_{OEt}W(CO)_4$ (3). Complex 3 was synthesised in an identical manner to complex 1 using the proligand LoEt (0.18 g, 0.57 mmol) instead. Complex 3 was isolated as a light reddish-brown solid, and was recystralised from DCM and hexane, (0.33 g, 66%). ¹H NMR (300.1 MHz; CD₂Cl₂): δ 1.33 (t, J_{H-H} = 5.4 Hz, 3H, OCH₂CH₃); 3.93 (q, $J_{\text{H-H}} = 5.4 \text{ Hz}$, 2H, OC H_2 CH₃); 6.68–6.61 (m, 3H, Ar-*H*); 6.774 (dt, $J_{\text{H-H}} = 6.0$, 1.5 Hz, 2H, Ar-*H*); 6.91 (dt, $J_{\text{H-H}} =$ 5.7, 1.5 Hz, 2H, Ar-H); 7.05 (dd, $J_{\text{H-H}} = 6.0$, 1.2 Hz, 2H, Ar-H); 7.29–7.22 (m, 4H, Ar-H); 7.68–7.56 (m, 9H, Ar-H); 7.95-7.90 (m, 6H, Ar-H). ¹³C{¹H} NMR (100.6 MHz; CD₂Cl₂): δ 15.17 (s, OCH_2CH_3 ; 64.08 (s, OCH_2CH_3); 120.94 (s, CH); 124.02 (d, $J_{C-P}=$ 9.3 Hz, CH); 126.37 (s, C); 127.38 (s, C); 128.31 (s, CH); 129.40 (s, CH); 129.47 (s, CH); 129.60 (s, CH); 130.80 (s, C); 131.53 (s, C); 133.67 (d, *J*_{C-P} = 2.6 Hz, CH); 134.15 (s, CH); 134.98 (s, CH); 135.08 (s, CH); 138.18 (s, C); 148.43 (s, C); 154.54 (s, C); 156.56 (s, C); 174.61 (s, C); 204.12 (s, CO); 205.88 (s, CO); 214.36 (s, CO); 216.46 (s, CO). ³¹P{¹H} NMR (121.5 MHz; CDCl₃): δ 28.60 (s). IR (Nujol[®], cm⁻¹): 1995 (v_{co}), 1879 (v_{co}), 1852 (v_{co}), 1802 (v_{co}), $1533 (v_{CN}), 1231 (v_{NP}).$ MS (ESI, m/z): Calc. Mass: 844.1659; Obs. Mass: 844.1687 ((M – CO)⁺). Anal. Calcd for $C_{43}H_{33}N_2O_5PW$ (872.55): C, 59.19; H, 3.81; N, 3.21. Found: C, 58.43; H, 3.85; N, 3.19.

(Ph)₃PN(C₆H₄)C(Ph)(= N(3,5 - Me₂C₆H₃))W(CO)₄, L_{Xy1}W -(CO)₄ (4). Complex 4 was synthesised in an identical manner to complex 1 using the proligand L_{Xy1} (0.18 g, 0.57 mmol) instead. Complex 4 was isolated as a light brown solid, (0.30 g, 62%). ¹H NMR (300.1 MHz; CD₂Cl₂): δ 2.06 (s, 3H, CH₃); 2.29 (s, 3H, CH₃); 6.05 (s, 1H, Ar-*H*); 6.67–6.59 (m, 3H, Ar-*H*); 6.78 (dt, J_{H-H} = 6.3, 1.8 Hz, 1H, Ar-*H*); 6.90 (td, J_{H-H} = 7.5, 1.8 Hz, 1H, Ar-*H*); 7.01 (s, 1H, Ar-*H*); 7.11–7.08 (m, 2H, Ar-*H*); 7.28–7.23 (m, 3H, Ar-*H*); 7.69-7.55 (m, 9H, Ar-*H*); 7.97–7.90 (m, 6H, Ar-*H*). ¹³C{¹H} NMR (100.6 MHz; CD₂Cl₂): δ 21.57 (s, *m*-CH₃); 31.15 (s, *m*-CH₃); 119.47 (s, CH); 120.94 (s, CH); 124.08 (d, J_{C-P} = 9.2 Hz, CH); 126.37 (s, CH); 126.74 (s, CH); 127.38 (s, C); 128.17 (s, CH); 129.43 (s, CH); 129.55 (s, CH); 130.61 (s, C); 131.47 (s, C); 133.64 (d, $J_{C-P} = 2.7$ Hz, CH); 134.09 (s, CH); 134.98 (s, CH); 135.07 (s, CH); 137.89 (s, C); 154.20 (s, C); 154.43 (s, C); 173.91 (s, C); 204.26 (s, CO); 205.89 (s, CO); 214.15 (s, CO); 216.51 (s, CO). ³¹P{¹H} NMR (121.5 MHz; CD₂Cl₂): δ 25.09 (s). IR (Nujol®, cm⁻¹): 1998 (v_{CO}), 1874 (v_{CO}), 1842 (v_{CO}), 1808 (v_{CO}), 1549 (v_{CN}), 1241 (v_{NP}). MS (ESI, m/z): 828.1 ((M – CO)⁺). Anal. Calcd for C₄₃H₃₃N₂O₄PW.CH₂Cl₂: C 56.13, H 3.75, N 2.98. Found (%): C 56.04, H 4.00, N 2.96.

(Ph)₃PN(C₆H₄)C(Ph)(=N(2,4,6-Me₃C₆H₂))CoCl₂, L_{Mes}CoCl₂ (5). A Schlenk flask was loaded with proligand L_{Mes} (0.5 g, 0.87 mmol) and anhydrous CoCl₂ (0.12 g, 0.96 mmol), and THF (20 ml) was added. The reaction mixture was stirred for 18 h at room temperature, which resulted in the formation of a green suspension. Ether (20 ml) was added to further precipitate the green solid, and after filtration, washing with ether (3 × 5 ml) and drying under vacuum yielded **5** (0.47 g, 76%). IR (Nujol®, cm⁻¹): 1553 (v_{CN}), 1238 (v_{NP}). μ_{eff} = 5.32 µB. MS (EI, *m/z*): Calc. Mass: 703.1260; Obs. Mass: 703.1247 (M); Calc. Mass: 667.1461; Obs. Mass: 667.1480 (M – HCl). Anal. Calcd for C₄₀H₃₅N₂PCl₂Co (704.53): C, 68.19; H, 5.01; N, 3.98. Found: C, 68.27; H, 4.97; N, 3.97.

(Ph)₃PN(C₆H₄)C(Ph)(=N(4-MeC₆H₄))CoCl₂, L_{Tol}CoCl₂ (6). Complex 6 was made in an identical manner to 5, using proligand L_{Tol} (0.5 mg, 0.91 mmol), and CoCl₂ (0.13 g, 1.01 mmol). Yielding a green solid of 6 (0.46 g, 74%). A single crystal suitable for X-ray crystallography was grown from cooling a solution of DCM and hexane. IR (Nujol®, cm⁻¹): 1547 (v_{CN}), 1234 (v_{NP}). μ_{eff} = 4.26 µB. MS (EI, *m/z*): Calc. Mass: 675.0924; Obs. Mass: 675.0934 (M); Calc. Mass: 640.1252; Obs. Mass: 640.1245 (M – Cl). Anal. Calcd for C₃₈H₃₁N₂PCl₂Co (676.48): C, 67.47; H, 4.62; N, 4.14. Found: C, 67.47; H, 4.73; N, 4.01.

 $(Ph)_{3}PN(C_{6}H_{4})C(Ph)(=N(2,4,6-Me_{3}C_{6}H_{2}))NiBr_{2},$ L_{Mes}NiBr₂ (7). A yellow solution of proligand L_{Mes} (0.5 g, 0.87 mmol) in DCM (10 ml) was added to a suspension of Ni(DME)Br₂ (0.3 g, 0.96 mmol) in DCM (10 ml). The reaction mixture immediately turns green and was stirred at room temperature for 18 h. The resulting dark green solution was concentrated in vacuo and ether (20 ml) was added to precipitate a blue solid. Filtration, washing with ether $(3 \times 5 \text{ ml})$, and drying under vacuum yielded a blue solid of 7 (0.49 g, 71%). A single crystal suitable for X-ray crystallography was grown from slow cooling a solution of DCM and hexane. IR (Nujol^(R), cm⁻¹): 1558 (v_{CN}), 1242 ($v_{\rm NP}$). $\mu_{\rm eff} = 3.51 \ \mu\text{B}$. MS (EI, m/z): Calc. Mass: 713.1042; Obs. Mass: 713.1054 for $C_{40}H_{35}N_2P^{58}Ni^{81}Br$ and 713.1029 for C₄₀H₃₅N₂P⁶⁰Ni⁷⁹Br (M – Br). Calc. Mass: 711.1093; Obs. Mass: 711.1075 for $C_{40}H_{35}N_2P^{58}Ni^{79}Br$ (M – Br). Anal. Calcd for C40H35N2PBr2Ni (793.20): C, 60.57; H, 4.45; N, 3.53. Found: C, 60.48; H, 4.45; N, 3.51.

(Ph)₃PN(C₆H₄)C(Ph)(=N(4-MeC₆H₄))NiBr₂, L_{tol}NiBr₂ (8). Complex 8 was made in an identical manner to 7, using proligand L_{Tol} (0.5 g, 0.91 mmol), and Ni(DME)Br₂ (0.31 g, 1.01 mmol). Yielding a blue solid of 8 (0.48 g, 69%). IR (Nujol®, cm⁻¹): 1548 ($v_{\rm CN}$), 1247 ($v_{\rm NP}$). $\mu_{\rm eff} = 2.24 \ \mu$ B. MS (EI, m/z): Calc. Mass: 685.0742; Obs. Mass: 685.0741 for C₃₈H₃₁N₂P⁵⁸Ni⁸¹Br, and 685.0716 for C₃₈H₃₁N₂P⁶⁰Ni⁷⁹Br (M – Br). Calc. Mass: 683.077; Obs. Mass: 683.0762 for C₃₈H₃₁N₂P⁵⁸Ni⁷⁹Br (M – Br). Anal. Calcd for C₃₈H₃₁N₂PBr₂Ni (765.15): C, 63.89; H, 4.69; N, 3.73. Found: C, 64.12; H, 4.78; N, 3.72.

 $(Ph)_{3}PN(C_{6}H_{4})C(Ph)(=N(2,4,6-Me_{3}C_{6}H_{2}))ZnCl_{2}, L_{Mes}ZnCl_{2}$ (9). A Schlenk flask was loaded with proligand 1a (0.5 g, 0.87 mmol) and anhydrous ZnCl₂ (0.13 g, 0.96 mmol), and THF (5 ml) was added. The reaction mixture was stirred for 18 h at room temperature, which resulted in the formation of a yellow suspension. After filtration, washing with hexanes $(3 \times 5 \text{ ml})$ and drying under vacuum 9 was isolated as a pale yellow solid, (0.53 g, 86%). ¹H NMR (400.2 MHz; CD₂Cl₂): δ 2.02 (s, 6H, *o*-CH₃); 2.18 (s, 3H, *p*-CH₃); 6.68 (m, 3H, Ar-*H*); 6.75 (t, J_{H-H} = 8.0 Hz, 1H, Ar-*H*); 6.91 (m, 2H, Ar-*H*); 7.08 (d, $J_{H-H} = 4.0$ Hz, 2H, Ar-*H*); 7.26 (t, $J_{\text{H-H}} = 8.0$ Hz, 2H, Ar-H); 7.36 (t, $J_{\text{H-H}} = 8.0$ Hz, 1H, Ar-*H*); 7.57 (dt, ${}^{d}J_{H-H} = 4.0$ Hz, ${}^{t}J_{H-H} = 8.0$ Hz, 6H, Ar-*H*); 7.68 (t, $J_{\text{H-H}} = 8.0 \text{ Hz}$, 3H, Ar-H); 7.88 (q, $J_{\text{H-H}} = 8.0 \text{ Hz}$, 6H, Ar-H). ¹³C NMR (100.6 MHz; CD₂Cl₂): δ 19.42 (s, *o*-CH₃); 21.07 (s, p-CH₃); 121.06 (s, CH); 125.53 (d, C); 126.53 (s, C); 127.23 (d, $J_{C-P} = 11.1$ Hz, CH); 128.23 (s, CH); 129.03 (s, CH); 129.54 (s, C); 129.63 (s, CH); 129.78 (d, $J_{C-P} = 5.0$ Hz, CH); 130.70 (s, CH); 131.86 (CH); 133.97 (d, $J_{C-P} = 3.0$ Hz, CH); 134.79 (d, $J_{C-P} =$ 11.1 Hz, CH); 135.15 (s, CH); 135.58 (s, C); 137.95 (s, C); 143.08 (s, C); 150.05 (s, C); 175.95 (s, C). ³¹P NMR (161.2 MHz; CD₂Cl₂): δ 29.87 (s). IR (Nujol[®], cm⁻¹): 1556 (v_{CN}), 1241 (v_{NP}). MS (EI, m/z): 673.0 (M – Cl)⁺. Anal. Calcd for C₄₀H₃₅N₂PCl₂Zn (710.86): C, 67.57; H, 4.69; N, 3.94. Found: C, 67.49; H, 4.88; N, 4.05.

 $(Ph)_{3}PN(C_{6}H_{4})C(Ph)(=N(4-MeC_{6}H_{4}))ZnCl_{2}, L_{Tol}ZnCl_{2}$ (10). A Schlenk flask was loaded with proligand L_{Tol} (0.48 g, 0.87 mmol) and anhydrous ZnCl₂ (0.13 g, 0.96 mmol), and THF (10 ml) was added. The reaction mixture was stirred for 18 h at room temperature, which resulted in the formation of a yellow suspension. Ether (10 ml) was added to further precipitate the yellow solid, and after filtration, washing with ether $(3 \times 5 \text{ ml})$ and drying under vacuum yielded 10 as a yellow solid (0.53 g, 89%). ¹H NMR (400.2 MHz; CD₂Cl₂): δ 2.30 (s, 3H, *p*Tol-CH₃); 6.55 (d, $J_{\text{H-H}} = 8.0$ Hz, 1H, Ar-H); 6.76 (t, $J_{\text{H-H}} = 8.0$ Hz, 1H, Ar-*H*); 6.86 (t, $J_{\text{H-H}} = 8.0$ Hz, 3H, Ar-*H*); 6.95 (t, $J_{\text{H-H}} = 8.0$ Hz, 1H, Ar-H); 7.02 (d, $J_{\text{H-H}} = 4.0$ Hz, 2H, Ar-H); 7.08 (d, $J_{\text{H-H}} =$ 8.0 Hz, 2H, Ar-H); 7.27 (t, $J_{\text{H-H}} = 8.0$ Hz, 2H, Ar-H); 7.36 (t, $J_{\text{H-H}} = 8.0 \text{ Hz}, 1\text{H}, \text{Ar-}H$; 7.52 (t, $J_{\text{H-H}} = 8.0 \text{ Hz}, 6\text{H}, \text{Ar-}H$); 7.65 (t, $J_{\text{H-H}} = 4.0$ Hz, 3H, Ar-H); 7.79 (dd, $J_{\text{H-H}} = 8.0$, 4.0 Hz, 6H, Ar-*H*). ¹³C{¹H} NMR (100.6 MHz; CD₂Cl₂): δ 21.34 (s, *C*H₃); 121.82 (s, CH); 124.02 (s, CH); 126.11 (s, C); 127.11 (s, C); 128.29 (d, $J_{C-P} = 8.1$ Hz, CH); 128.63 (s, CH); 129.70 (t, $J_{C-P} = 13.1$ Hz, CH); 130.28 (s, CH); 130.51 (s, CH); 132.14 (s, CH); 133.91 (d, $J_{C-P} = 3.0$ Hz, CH); 134.31 (s, CH); 134.41 (s, CH); 134.82 (s, CH); 136.36 (s, C); 137.26 (s, C); 144.64 (s, C); 148.60 (s, C); 176.10 (s, C). ³¹P{¹H} NMR (162.0 MHz; CD₂Cl₂): δ 27.52 (s). IR (Nujol®), cm⁻¹): 1551 (vCN), 1238 (vNP). MS (Maldi-TOF, m/z): 645.2 (M – Cl)⁺. Anal. Calcd for C₃₈H₃₁N₂PCl₂Zn·CH₂Cl₂ (767.61): C, 61.87; H, 4.69; N, 3.52. Found: C, 61.59; H, 4.43; N, 3.51.

Acknowledgements

The authors would like thank UBC and NSERC of Canada for funding and Mr. J. N. Murphy for preparation of some ligands.

Notes and references

- (a) K. V. Katti and R. G. Cavell, Organometallics, 1989, 8, 2147; (b) P. G. Hayes, G. C. Welch, D. J. H. Emslie, C. L. Noack, W. E. Piers and M. Parvez, Organometallics, 2003, 22, 1577; (c) B. Liu, D. Cui, J. Ma, X. Chen and X. Jing, Chem.-Eur. J., 2007, 13, 834; (d) K. D. Conroy, W. E. Piers and M Parvez, J. Organomet. Chem., 2008, 693, 834.
- 2 (a) T. T. Co, S. C. Shim, C. S. Cho and T.-J. Kim, Organometallics, 2005, 24, 4824; (b) C. Metallinos, D. Tremblay, F. B. Barrett and N. J. Taylor, J. Organomet. Chem., 2006, 691, 2044; (c) M. Sauthier, J. Fornies-Camer, L. Toupet and R. Reau, Organometallics, 2000, 19, 553; (d) L. Beaufort, A. Demonceau and A. F. Noels, Tetrahedron, 2005, 61, 9025; (e) M. Sauthier, F. Leca, R. F. de Souza, K. Bernardo-Gusmao, L. F. T. Queiroz, L. Toupet and R. Reau, New J. Chem., 2002, 26, 630; (f) K. Bernardo-Gusmao, L. F. T. Queiroz, R. F. de Souza, F. Leca, C. Loup and R. Reau, J. Catal., 2003, 219, 59.
- 3 (a) K. Dehnicke and F. Weller, Coord. Chem. Rev., 1997, 158, 103;
 (b) S. A. Bell, T. Y. Meyer and S. J. Geib, J. Am. Chem. Soc., 2002, 124, 10698; (c) M. C. Burland and T. Y. Meyer, Inorg. Chem., 2003, 42, 3438; (d) G. C. Welch, W. E. Piers, M. Parvez and R. McDonald, Organometallics, 2004, 23, 1811; (e) S. Hawkeswood and D. W. Stephan, Dalton Trans., 2005, 2182; (f) S. Hawkeswood, P. Wei, J. W. Gauld and D. W. Stephan, Inorg. Chem., 2005, 44, 4301; (g) S. Courtenay, D. Walsh, S. Hawkeswood, P. Wei, A. K. Das and D. W. Stephan, Inorg. Chem., 2007, 46, 3623.
- 4 (a) K. Aparna, R. P. K. Babu, R. McDonald and R. G. Cavell, Angew. Chem., Int. Ed., 2001, 40, 4400; (b) R. P. K. Babu, R. McDonald and R. G. Cavell, Chem. Commun., 2000, 481; (c) A. Kasani, R. P. K. Babu, R. McDonald and R. G. Cavell, Angew. Chem., Int. Ed., 1999, 38, 1483; (d) A. Kasani, R. McDonald and R. G. Cavell, Chem. Commun., 1999, 1993.
- 5 L. P. Spencer, R. Altwer, P. Wei, L. Gelmini, J. Gauld and D. W. Stephan, Organometallics, 2003, 22, 3841.
- 6 H-R. Wu, Y-H. Liu, S-M. Peng and S-T. Liu, Eur. J. Inorg. Chem., 2003, 3152.
- 7 S. Al-Benna, M. J. Sarsfield, M. Thorton-Pett, D. L. Ormsby, P. J. Maddox, P. Bres and M. Bochmann, J. Chem. Soc., Dalton Trans., 2000, 4247.
- 8 D. W. Stephan, Organometallics, 2005, 24, 2548.
- 9 (a) D. Aguilar, R. Bielsa, M. Contel, A. Lledos, R. Navarro, T. Soler and E. P. Urriolabeitia, *Organometallics*, 2008, **27**, 2929; (b) R. Bielsa, R. Navarro, T. Soler and E. P. Urriolabeitia, *Dalton Trans.*, 2008, 1203; (c) R. Bielsa, A. Larrea, R. Navarro, T. Soler and E. P. Urriolabeitia, *Eur. J. Inorg. Chem.*, 2005, 1724.
- 10 C. J. Wallis, I. L. Kraft, J. N. Murphy, B. O. Patrick and P. Mehrkhodavandi, Organometallics, 2009, 28, 3889.
- 11 (a) A. F. Douglas, B. O. Patrick and P. Mehrkhodavandi, Angew. Chem., Int. Ed., 2008, 47, 2290; (b) G. Labourdette, D. J. Lee, B. O. Patrick, M. B. Ezhova and P. Mehrkhodavandi, Organometallics, 2009, 28, 1309.
- (a) M. D. Hannant, M. Schormann and M. Bochmann, J. Chem. Soc., Dalton Trans., 2002, 4071; (b) M. D. Hannant, M. Schormann, D. L. Hughes and M. Bochmann, Inorg. Chim. Acta, 2005, 358, 1683; (c) C. A. Wheaton, B. J. Ireland and P. G. Hayes, Organometallics, 2009, 28, 1282; (d) C. A. Wheaton, P. G. Hayes and B. J. Ireland, Dalton Trans., 2009, 4832.
- 13 S. A. Moya, R. Pastene, H. Le Bozec, P. J. Baricelli, A. J. Pardy and J. Gimeno, *Inorg. Chim. Acta*, 2001, 312, 7.
- 14 A. O. Youssef, M. M. H. Khalil, R. M. Ramadan and A. A. Soliman, *Transition Met. Chem.*, 2003, 28, 331.
- 15 The material crystallized with three molecules of CH_2Cl_2 in the asymmetric unit. Two of these solvent molecules are disordered and were modelled in two orientations.
- 16 (a) K. V. Katti, B. D. Santarsiero, A. A. Pinkerton and R. G. Cavell, *Inorg. Chem.*, 1993, **32**, 5919; (b) E. Subasi, H. Temel, O. S. Senturk and F. Ugur, *J. Coord. Chem.*, 2006, **59**, 1807; (c) Q. Ye, Q. Wu, H. Zhao, Y.-M. Song, X. Xue, R.-G. Xiong, S.-M. Pang and G.-H. Lee, *J. Organomet. Chem.*, 2005, **690**, 286.
- 17 G.A. Miessler and D. A. Tarr, *Inorganic Chemistry*, 2nd Edn, Prentice Hall, New Jersey, 1998, pp. 313–316.
- 18 J-H. So and P. Boudjouk, Inorg. Chem., 1990, 29, 1592.
- 19 Complex **3** was highly soluble in a variety of solvents which prevented its purification in the bulk state.