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Copper-catalyzed asymmetric allylic alkylation is an efficient
C�C bond-forming reaction for obtaining optically active
compounds.[1] The use of hard alkyl nucleophiles such as
Grignard or organozinc reagents usually produces SN2’
products (g products) with excellent regio- and enantioselec-
tivity.[2] In contrast, substitution with aryl metal nucleophiles
produces insufficient regio- and enantioselectivity as well as
low yield.[3,4] In 2007, Hoveyda and co-workers reported
highly regio- and enantioselective arylation with organozinc
reagents on very specific vinylsilane substrates.[5] To date,
however, there have been no reports of successful copper-
catalyzed asymmetric allylic arylation (AAAr) of cinnamyl-
type substrates with aryl metal reagents,[6] even though the
resulting trisubstituted carbon atom having two aryl groups is
an important structural motif which is often found in
pharmaceuticals (e.g., sertraline[7] and tolterodine[8]), biolog-
ically active compounds (e.g., indatraline[9]), and natural
products (e.g., podophyllotoxin[10]).

Recently, we reported a catalytic AAAr of arylmagne-
sium bromide to aliphatic allylic bromides, using a chiral
amidophosphane L1–copper(I) catalyst, to afford high regio-
and enantioselectivity (up to exclusive g selectivity, 81 % ee).
The reactions of cinnamyl-type substrates, however, had poor
g selectivity (g/a 16:84) (Scheme 1).[11] Herein, we report a
powerful method for enantioselective synthesis of a range of
diarylvinylmethanes by unprecedented AAAr of arylmagne-
sium bromides to cinnamyl-type substrates efficiently cata-

lyzed by a newly designed chiral N-heterocyclic carbene
(NHC)[12]–copper(I) complex C2 (Figure 1).[13]

As illustrated in Table 1, a diethyl ether solution of
PhMgBr (3m ; 0.20 mL, 0.6 mmol) diluted with CH2Cl2

(0.25 mL) was added over a 15 minute period to a solution
of 4-chlorocinnamyl bromide (1a ; 0.50 mmol) in CH2Cl2

(1 mL) at �78 8C. NHC–Cu catalysts (2 mol%) were pre-
pared in situ by deprotonating the corresponding imidazoli-
dinium salts L2–4 with nBuLi (6.6 mol%) in the presence of
copper thiophenecarboxylate (CuTC). The catalyst derived
from L2,[12] having a phenyl group on the nitrogen atom,
afforded g-2a with poor enantioselectivity (29 % ee) and low
g selectivity (g/a 27:73). The catalyst derived from L3, having
a mesitylmethyl substituent,[12] gave mostly a product a-2a
with a slight amount of g-2a having a 31 % ee (g/a 4:96).
Fortunately, the in situ prepared L4–Cu catalyst exhibited
high enantioselectivity (95 % ee) with moderate regioselec-

Scheme 1. Amidophosphane L1–Cu-catalyzed AAAr with PhMgBr.

Figure 1. Chiral ligands and NHC–copper(I) complexes.

Table 1: Catalyst screening.[a]

Entry Catalyst[b] Yield [%] g/a[c] ee [%][c]

1 L2–Cu >99[d] 27:73 ent-29
2 L3–Cu >99[d] 4:96 31
3 L4–Cu >99[d] 62:38 95
4 C1 98[e] 67:33 96
5 C2 96[e] 93:7 95

[a] PhMgBr (1.2 equiv) was added to the reaction mixture over a period
of 15 minutes. Cinnamyl bromide 1a was not detected by 1H NMR
analysis of the crude reaction mixtures. [b] Copper complexes derived
from L2–4 were prepared in situ using 2.2 mol% of ligand (L2–4),
2 mol% of CuTC, and 6.6 mol% of nBuLi. C1 and C2 (2 mol%) were
used as isolated complexes. [c] Determined by GC analysis on a chiral
stationary phase (Chiraldex B-DM). [d] Yield determined from 1H NMR
analysis of the crude reaction mixture. [e] Yield of isolated product.
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tivity (g/a 62:38). An isolated air-stable NHC–CuCl complex
C1 derived from L4 also gave comparable results to afford g-
2a with 96% ee and a g/a ratio of 67:33 (Table 1, entry 4). We
speculated that a ligand with bulky Ar groups might improve
the regioselectivity by enhancing the rate of the reductive
elimination step of the initially formed g-s-allyl–CuIII inter-
mediate.[14] As expected, an isolated air-stable NHC–CuCl C2
derived from L5, having an ortho-methyl group on the phenyl
moieties (Ar = 2-MeC6H4), dramatically increased the g se-
lectivity to 93:7 without affecting the high enantioselectivity
(95 % ee ; Table 1, entry 5).

Having established the optimal catalyst for cinnamyl-type
substrates (Table 1, entry 5), we evaluated the arylation of
other substrates. The reaction of substrates with electron-
deficient aryl moieties, for example, a chloro substituent at
the ortho, meta, or para position or a para-trifluoromethyl
group, gave the g products g-2a–e with 92–96% ee and high
regioselectivity (� 93:7) in high yield (Table 2, entries 1–5).
Moreover, sterically demanding o-tolyl substrate 1 f gave an

unprecedented high enantioselectivity (98 % ee) and a high g/
a ratio (95:5; Table 2, entry 6). The catalyst amount affected
the selectivity of the reaction;[11] gradually decreasing the
catalyst loading from 4 to 0.5 mol% did not affect the
enantioselectivity, whereas the g/a ratio decreased from 97:3
to 90:10 (Table 2, entries 7–9). These results indicate that the
high catalyst loading accelerated the reaction, thereby
preventing the formation of the undesirable diphenylcuprate
intermediate, which might lead to an a product through p-
allyl equilibration.[15] The optimum amount of C2 was
determined to be 2 mol %. Allylic bromide 1 g with an o-
methoxy group afforded g-2g with 93 % ee and 94:6 g/a
selectivity (Table 2, entry 10). The more sterically hindered
naphthyl substrate 1h gave g-2h with 93% ee in 75:25
regioselectivity (Table 2, entry 11).[16]

The enantioselective arylation of o-methylcinnamyl bro-
mide (1 f) with p-fluoro-, p-chloro-, and p-methylphenyl
Grignard reagents proceeded in high yield with excellent
regio- and enantioselectivity (up to 96% yield, g/a 97:3,
98% ee ; Table 3, entries 1–3). High regio- and enantioselec-

tivity (g/a 97:3, 92% ee) were also observed with the
methylenedioxyphenyl Grignard reagent leading to g-2 l in
acceptable yield (68 %) along with 22% recovery of the
starting material (Table 2, entry 4).

The ee value of g-2e was determined after transformation
into alcohol 3, the enantiomer of an alcohol with established
stereochemistry,[17] using a hydroboration/oxidation protocol
(Scheme 2). Product 3 is an intermediate in the synthesis of
sertraline, a major pharmaceutical for the treatment of
depression.

In conclusion, we developed an air-tolerant monodentate
chiral NHC–CuCl catalyst for highly enantio- and g-selective
copper-catalyzed allylic arylation of cinnamyl bromides using
aryl Grignard reagents, which affords the versatile chiral
building blocks diarylvinylmethanes.

Experimental Section
Typical procedure for the AAAr reaction (Table 2, entry 1): A dry
10 mL tube was charged with NHC–CuCl catalyst C2 (7.1 mg,

Table 2: Copper-catalyzed asymmetric allylic arylation of cinnamyl-type
substrates using PhMgBr.

Entry 1 Ar1 2 Yield [%][a] g/a[b] ee [%][c]

1 1a 4-ClC6H4 2a 96 93:7 95
2 1b 3-ClC6H4 2b 99 95:5 93
3 1c 2-ClC6H4 2c 99 96:4 96
4 1d 4-CF3C6H4 2d 99 93:7 93
5 1e 3,4-Cl2C6H3 2e 99 95:5 92
6 1 f 2-MeC6H4 2 f 99 95:5 98
7[d] 1 f 2-MeC6H4 2 f 99 97:3 97
8[e] 1 f 2-MeC6H4 2 f 98 93:7 98
9[f ] 1 f 2-MeC6H4 2 f 99 90:10 97
10 1g 2-MeOC6H4 2g 91 94:6 93
11[g] 1h 1-naphthyl 2h 97 75:25 93

[a] Yield of isolated product. [b] Determined by GC analysis on a chiral
stationary phase or by 1H NMR analysis of the crude reaction mixture.
[c] Determined by HPLC analysis on a chiral stationary phase after
conversion into the corresponding terminal alcohol by hydroboration/
oxidation or by chiral GC analysis. [d] Used 4 mol% of C2. [e] Used
1 mol% of C2. [f ] Used 0.5 mol% of C2. [g] Reaction run for 1 h.

Table 3: Copper-catalyzed asymmetric allylic arylation of 1c and 1 f using
various aryl Grignard reagents.

Entry 1 Ar1 Ar2 2 Yield [%][a] g/a[b] ee [%][c]

1 1 f 2-MeC6H4 4-FC6H4 2 i 96 97:3 97
2 1 f 2-MeC6H4 4-ClC6H4 2 j 96 94:6 97
3 1 f 2-MeC6H4 4-MeC6H4 2k 94 96:4 98

4 1c 2-ClC6H4 2 l 68[d] 97:3 92

[a] Yield of isolated product. [b] Determined by GC or 1H NMR analysis of
the crude reaction mixture. [c] Determined by HPLC analysis on a chiral
stationary phase after conversion into the corresponding terminal
alcohol by hydroboration/oxidation or GC analysis on a chiral stationary
phase. [d] Reaction run for 1 h. 1c was recovered in 22% yield.

Scheme 2. Conversion of g-2e into 3, a synthetic intermediate of
sertraline. 9-BBN= 9-borabicyclo[3.3.l]nonane, THF = tetrahydrofuran.
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0.02 mmol) and allylic substrate 1a (0.50 mmol). Distilled CH2Cl2

(1 mL) was then added to the mixture which was then cooled to
�78 8C and stirred for 10 min. A solution of PhMgBr (3m in Et2O;
0.20 mL, 0.6 mmol) diluted with CH2Cl2 (0.25 mL) was added over
15 min using a syringe pump. Once the addition of PhMgBr was
complete, the reaction mixture was stirred for 30 min at �78 8C. The
mixture was diluted with Et2O (6 mL) and quenched with aqueous
10% HCl (0.5 mL). The aqueous phase was separated and extracted
with Et2O (3 � 3 mL). The combined organic layers were dried over
Na2SO4, filtered, and concentrated in vacuo. The products were
purified by silica gel column chromatography (n-pentane/Et2O 20:1)
to give a 93:7 mixture of g-2a with 95% ee and a-2a (110 mg, 96 %) as
colorless oil: a½ �21

D =�9.5 (c = 0.52, CHCl3). Enantio- and regioselec-
tivity were determined by GC analysis on a chiral stationary phase:
Chiraldex B-DM (25 m � 0.25 mm � 0.25 mm), initial temp. 60 8C,
0.5 8Cmin�1, intermediate temp. 120 8C, 30 min, 0.5 8C min�1, final
temp. 160 8C, retention times (min): 163.6 (minor g-2a), 164.6 (major
g-2a), and 200.5 (a-2a).
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