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Abstract: Reaction of homoallylic alcohols 1a–e with i-PrMgBr in
the presence of Ti(i-PrO)4 leads to the unbranched saturated diols
2a–e as the main products in moderate to good yields. The head-to-
head regioselectivity in reductive coupling of 4-penten-1-ol and 5-
hexen-2-ol was also observed. Coupling of 2-methyl-5-hexen-2-ol,
as well as unsaturated alcohols in which vinyl and hydroxyl groups
are more distant from one another, proceeded with head-to-tail or
tail-to-tail regioselectivity. It is supposed, that the unusual head-to-
head regioselectivity in reductive coupling of homoallylic alcohols
1a–e is due to the formation of the key titanacyclopentane interme-
diates F and G having two fused oxatitanacyclopentane rings.

Key words: titanium alkoxides, Grignard reagents, homoallylic al-
cohols, reductive coupling

Carboxylic esters react with ethylmagnesium bromide in
the presence of titanium(IV) isopropoxide to afford 1-
substituted cyclopropanols.1 It was supposed, that the
reaction proceeds via disproportionation of diethyltitani-
um(IV) isopropoxide to give diisopropoxytitanacyclo-
propane as a key 1,2-dicarbanionic equivalent. This
putative species exhibits also the properties of an titani-
um(II)-ethylene complex, and the first example of its in-
volvement in a ligand exchange reaction was ethylene
displacement by styrene with the formation of the titani-
um(II)-styrene complex (1,1-diisopropoxy-2-phenylti-
tanacyclopropane).2 Interaction of Ti(i-PrO)4 with higher
alkylmagnesium halides containing b-H atoms also result-
ed in the generation of the corresponding 2-substituted ti-
tanacyclopropanes,3 and some of them were more
effectively involved in the olefin ligand exchange reaction
with alkenes than the parent diisopropoxytitanacyclopro-
pane.4–7 The use of the ligand exchange approach to the 2-
substituted titanacyclopropane reagents, in combination
with their in situ reaction with carboxylic esters, repre-
sents a versatile way to synthetically useful 1,2-disubsti-
tuted cyclopropanols.8 From our experience, sterically
unhindered b- and g- vinylic alcohols,6,9 as well as b,g-un-
saturated acetals10 are most effectively involved in the ti-
tanium-mediated hydroxycyclopropanation reaction, and
this appears to be due to coordination of the oxygen atom
of the substrate with the oxophilic titanium atom of the re-
agent. Thus, for example, dialkoxytitanacyclopropanes
promote a smooth hydroxycyclopropanation of the ho-

moallylic alcohols with the carboxylic esters.9,11 In this
paper we report that, in the absence of an ester, the di-
alkoxytitananacyclopropane reagents effectively induced
reductive coupling of homoallylic alcohols affording lin-
ear diols as main products with unusual head-to-head
regioselectivity12.

Treatment of homoallylic alcohols 1a–e with 2 equi-
valents i-PrMgBr in the presence of 0.5 equivalents
Ti(i-PrO)4 or 3 equivalents i-PrMgBr in the presence of
1 equivalents Ti(i-PrO)4, followed by quenching of the
reaction mixture with water, led to the formation of diols
2a–e and 3a–e (Scheme 1).13 For example, 3-buten-1-ol
(1a) was converted into 1,8-octanediol (2a) and the
branched 1,7-heptanediol (3a) in 4:1 ratio under the action
of 2 equivalents i-PrMgBr/0.5 equivalents Ti(i-PrO)4 in
diethyl ether at room temperature.

Scheme 1

As illustrated in the Table 1, the linear reductive coupling
products 2a–e were formed in this reaction in moderate to
good yields (entries 1–6). Diene alcohol 1e having an al-
lylic double bond gave the products 2e and 3e in lower
yields (entry 6), probably due to side reactions of allylic
substitution of hydroxyl group under treatment with ti-
tanacyclopropane reagents.14 A moderate yield of the re-
ductive coupling products was also observed for 2-
methyl-1-phenyl-3-buten-1-ol (1f), bearing a sterically
more hindered vinyl group, however the regioselectivity
of the head-to-head reductive coupling remained high (en-
try 7). At the same time, in the case of unsaturated alco-
hols, in which the vinyl and hydroxyl groups are more
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distant from each other, the regularity of preferable for-
mation of head-to-head coupling products 2 was not ob-
served. Whereas, 4-penten-1-ol (1g) and 5-hexen-2-ol
(1h) under treatment with i-PrMgBr in the presence of
Ti(i-PrO)4 undergo the above mentioned the head-to-head

reductive coupling to afford the corresponding linear diols
2g and 2h as main products (entries 8 and 9), 2-methyl-5-
hexen-2-ol (1i) and 5-hexen-1-ol (1j) gave preferably the
corresponding head-to-tail coupling products 3i and 3j,
respectively (entries 10 and 11). Finally, under the same

Table 1 Yields of Reductive Coupling Products in the Reaction of Unsaturated Alcohols with i-PrMgBr in the Presence of Ti(i-PrO)4

Entry Substrate Equiv Ti(i-PrO)4 Main producta 2:3 Yield (%)b

1

1a

0.5

2a

80:20 68

2

1b

0.5

2b

90:10 70

3

1c

0.5

2c

80:20 69

4 1.0c 95:5 77

5

1d

1.0c

2d

95:5 78

6

1e

0.5

2e

90:10 46

7

1f

0.5

2f

85:15 54

8

1g

0.5

2g

83:17 62

9

1h

0.5

2h

90:10 72

10

1i

1.0c

3i

30:45d 70

11

1j

0.5

3j

0:60e 49

12

1k

0.5 15:30f 62

a Selected NMR data of the reductive coupling products, see ref.15

b Isolated yield of mixture of the regioisomeric diols.
c 3 equiv of i-PrMgBr was used.
d Near 25% (GC-MS) of tail-to-tail reductive coupling product was formed.
e Near 40% (NMR) of tail-to-tail reductive coupling product was formed.
f Near 55% (NMR) of tail-to-tail reductive coupling product was formed.

D
ow

nl
oa

de
d 

by
: W

E
S

T
 V

IR
G

IN
IA

 U
N

IV
E

R
S

IT
Y

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



LETTER Reductive Coupling of Homoallylic Alcohols 969

Synlett 2003, No. 7, 967–970 ISSN 1234-567-89 © Thieme Stuttgart · New York

conditions, 10-undecen-1-ol (1k) was mainly converted
into the tail-to-tail coupling product (entry 12). When in-
creased amounts of i-PrMgBr and Ti(i-PrO)4 were used to
promote reductive coupling of compounds 1c, an im-
provement in the yields and in the regioselectivity were
observed (entry 4).

The unusual head-to-head regioselectivity of the reduc-
tive coupling of vinylic alcohols is the most noteworthy
observation in this work. In contrast to alcohol 1b, its tet-
rahydropyranyl ether gave under the same reaction condi-
tions mainly the corresponding tail-to-tail and head to-tail
coupling products in low yields.16 A possible mechanism
for the transformation of homoallylic alcohols 1a–e into
the head-to-head reductive coupling products 2a–e is pre-
sented in Scheme 2. Exchange of alkoxide groups be-
tween magnesium alcoholate A and Ti(i-PrO)4 leads to the
formation of titanium alcoholate B, which is further alky-
lated with the Grignard reagent to form dialkyltitanium
derivative C. The latter is transformed into titanacyclo-
propane intermediate D by b-elimination of propane.17

Displacement of propylene in the intermediate D by alco-
holate B gives titanacyclopropane-olefin complex E.
Earlier we supposed,18 that the formation of a carbon-car-
bon bond in titanacyclopropane-olefin complexes is initi-
ated by alkylation of the titanium atom with the
organomagnesium reagent. In this case, titanacyclopro-
pane-olefin complex E, which may be considered as an
18e– organometallic species, under the action of i-PrMgBr
should be transformed into the corresponding 18e– titana-
cyclopentane ate-complex F. The organomagnesium
compound can further be liberated from the ate complex

F by ligand exchange to form titanacyclopentane alcoho-
late G, whose hydrolysis gives diols 2a–e.

The titanacyclopentane intermediates, in which the metal-
lacycle is fused to oxatitanacyclopentane or oxatitanacy-
clohexane rings, are probably more stable than the
corresponding titanacyclopentane intermediates fused to
larger oxatitanacycloalkane rings, or bearing noncyclic
substituents. This is probably the main reason of the ob-
served head-to-head regioselectivity of the reductive cou-
pling of unsaturated alcohols. The stability of tricyclic
intermediates, in which the titanacyclopentane fragment
is fused to oxatitanacyclopentane rings (F and G), is prob-
ably less sensitive to steric hindrance than that of the cor-
responding intermediates with fused oxatitanacyclo-
hexane rings. Indeed, although the reductive coupling of
primary and secondary g-vinylic alcohols led to prefera-
ble formation of the head-to-head products (entries 8 and
9), tertiary g-vinylic alcohol gave mainly the head-to-tail
coupling product (entry 10). When the vinyl and hydroxyl
groups are more distant from one another, monocyclic or-
ganotitanium intermediates bearing the substituents at
less sterically crowded b-carbon atoms of the metallacy-
cle are formed as the predominant intermediates, and the
reductive coupling of such compounds proceeds with the
generally observed head-to-tail or tail-to-tail regioselec-
tivity (entries 11 and 12).
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