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A series of 5-aryl-4-(5-substituted-2,4-dihydroxyphenyl)-1,2,3-thiadiazoles were synthesized and their
binding to several constructs of human Hsp90 chaperone measured by isothermal titration calorimetry
(ITC). The most potent compound bound Hsp90 with the dissociation constant of about 5 nM.

� 2009 Elsevier Ltd. All rights reserved.
Heat shock protein 90 (Hsp90), originally identified as one of
several conserved heat shock proteins, exhibits general protective
chaperone property—prevention of the unspecific aggregation of
misfolded proteins.1 Hsp90 constitutes about 1–2% of total cellular
proteins. This protein is responsible for ATP-depended folding, sta-
bility and functioning of many ‘‘client” proteins. Hsp90 functions
are essential for development and progression of various cancers.
Hsp90 inhibition leads to destabilization and degradation of many
oncogenic proteins. Hsp90 is a promising anticancer drug target, as
cancerous cells are more susceptible to Hsp90 inhibition than nor-
mal cells.2–7

The ATPase activity of Hsp90 can be inhibited by natural prod-
ucts such as geldanamycin and radicicol (Fig. 1). Both of these com-
pounds bind to the N-terminal domain of Hsp90 and inhibit the
intrinsic ATPase activity.8 Geldanamycin showed activity in human
tumor xenograft models but this compound proved to be too hepa-
totoxic for clinical development. However, the modified versions of
geldanamycin, 17-(allylamino)-17-demethoxygeldanamycin (17-
AAG) and 17-demethoxy-17-[[2-(dimethylamino)ethyl]amino]gel-
danamycin (17-DMAG) retain the property of Hsp90 inhibition and
have significantly less hepatotoxicity than geldanamycin.9 Phase 1
clinical trials of 17-AAG showed evidence of biological and clinical
activities, including prolonged stable disease in two patients with
melanoma.10 However, a second generation of Hsp90 inhibitors is
being sought to overcome some of the undesirable features of
ll rights reserved.
17-AAG, such as limited oral bioavailability, potential toxicity and
poor aqueous solubility.11,12

Radicicol is macrocyclic antibiotic isolated from Monosporium
bonorden. Radicicol is more potent inhibitor of Hsp90 ATPase activ-
ity than geldanamycin or 17-AAG.13 Radicicol oximes have shown
activity in animal models.14 However, no radicicol derivative has
progressed to the clinic.

The first synthetic small molecule inhibitors of Hsp90 were
based on the purine scaffold, for example, PU3 and PU24FCl
(Fig. 1).15 Amongst other compounds, novobiocin and cisplatin
have been reported to inhibit Hsp90 in these cases by binding at
the C-terminal site.16

Various 3,4-diarylpyrazole17 (Fig. 1) as well as 4,5-diarylisoxaz-
ole18 derivatives bearing resorcinol moiety have been selected by
high throughput screening. These compounds showed high
Hsp90 binding affinity and inhibitory effect on human cancerous
cell line growth.19

Despite the fact that a large number of different Hsp90 inhibitors
have been synthesized to date20, only few of them are clinically
tested. There still remains a great need of new potent Hsp90 inhib-
itors which offer one or more following advantages: improved
activity, selectivity, solubility, reduced toxicity and side-effects,
and reduced cost of synthesis.

Herein we report on a high-yielding synthesis of 5-aryl-4-
(5-substituted-2,4-dihydroxyphenyl)-1,2,3-thiadiazoles and the
results of in vitro binding to Hsp90 studies.

The chemistry employed for the design of the new compounds
reported here is shown in Scheme 1. Synthesis of the starting
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(ii) SOCl2, rt, 2 h, then NaHCO3.
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Figure 1. Schematic representation of some known Hsp90 binders.
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materials 1a–e was accomplished as previously described.19 Com-
pounds 1a–e reacted with hydrazine hydrate in boiling ethanol
and formed the corresponding hydrazones 2a–e.21 Latter five deriv-
atives underwent smoothly Hurd–Mori22 cyclization with thionyl
chloride at room temperature to form 5-aryl-4-(5-substituted-
2,4-dihydroxyphenyl)-1,2,3-thiadiazoles 3a–e in high yields.23,24

It is noteworthy that Hurd-Mori reaction usually proceeded succes-
fully when N-acyl- or N-tozylhydrazones bearing an adjacent meth-
ylene group were used. In our case, we observed smooth cyclization
of unactivated hydrazones 2a–e.

When compounds 2a and 2e were cyclized with thionyl chloride
at reflux temperature, the formation of chlorinated side-products 4
and 5 together with 3a,e was observed (Fig. 2).

The binding affinity of 5-aryl-4-(5-substituted-2,4-dihydroxy-
phenyl)-1,2,3-thiadiazoles to the full-length human Hsp90 protein
N
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4: R = Cl, Ar = 4-MeOC6H4;
5: R = Et, Ar = 4-EtOC6H4

Figure 2. Structures of compounds 4 and 5.
(Hsp90F) and the N-terminal domain of human Hsp90 (Hsp90N)25

were determined by isothermal titration calorimetry (ITC).26 Figure
3 shows representative isothermal titration calorimetry curves of
3b binding to the Hsp90 N (50 mM Hepes buffer, 100 mM NaCl,
pH 7.5, 37 �C). Protein concentration in the VP-ITC calorimeter
(Microcal, Inc.) cell was 6 lM. Ligand concentration in the syringe
was 120 lM. The binding constant was determined to be 1.6 �
108 M�1 with the stoichiometry of 0.97. This is equivalent to the
dissociation constant of 6.3 nM. The steep transition of the ITC
curve shows tight binding of 5-aryl-4-(5-substituted-2,4-dihy-
droxyphenyl)-1,2,3-thiadiazole to Hsp90 (see Fig. 4).

The strongest binder to both the Hsp90 N-terminal domain and
the full-length Hsp90 was compound 3b with the observed Kd of
about 6.3 nM and 4.8 nM, respectively. Compounds 3a, c–e also
tightly bound to Hsp90. Compounds 4, 5 bearing chloro-substituent
Figure 3. Isothermal titration calorimetry curve of 3b binding to Hsp90N. The
upper panel shows raw data and the lower panel-integrated data.



Figure 4. Normalized U2OS cancer cell line survival as a function of compound 3b,
3e, and 5 concentration.

Table 1
Dissociation constants of compounds 3a–e, 4, and 5 binding to both protein
constructs (Hsp90N and Hsp90F) as determined by ITC at 37 �C

Compound Hsp90N Kd lM Hsp90F Kd lM

3a 0.013 0.0075
3b 0.0063 0.0048
3c 0.017 0.011
3d 0.034 0.039
3e 0.042 0.037
4 >20 >20
5 >20 >20
17-AAG 0.20 0.24

Values are means of multiple experiments.
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in position 3 of the dihydroxyphenyl moiety practically did not bind
to Hsp90. These compounds could not form the extensive H-bond-
ing network involving both resorcinol hydroxyls due to the chloro-
substituent, resulting in the lack of activity.19

The dissociation constants of compounds 3a–e, 4, and 5 with
both protein constructs, obtained at 37 �C, are listed in Table 1.

Compound effect on cancer cells was tested by determining cell
growth, death and survival as a function of compound concentra-
tion for two selected cancer cell lines, U2OS (osteosarcoma) and
HeLa (cervical carcinoma)27, using tetrazolium/formazan assay.28

The strongest inhibitor of cancer cell growth was compound 3e
with the observed GI50 of 0.69 lM for U2OS cells and 0.70 lM for
HeLa cells (Table 2, Fig. 4). Compound 5 was a relatively weak
inhibitor of cancer cell lines. This property correlates well with
its weak binding to Hsp90 (Table 2). Other compounds exhibited
average potency of cancer cell growth inhibition. The compound
series has potential to become candidates for therapeutic antican-
cer treatment.

In conclusion, a new group of compounds, similar to previously
described diaryl pyrazoles19, was shown to be effective binders of
Table 2
U2OS and HeLa cancer cell line survival (growth inhibition, GI50) by compounds
3a–e, 5

Compound U2OS, GI50, lM HeLa, GI50, lM

3a 6.0 2.5
3b 6.9 3.6
3c 7.1 3.3
3d 9.9 4.2
3e 0.69 0.70
5 28 19

Values are means of multiple experiments.
Hsp90 protein target and potent inhibitors of cancer cell survival
and growth. A simple novel route has been employed for the com-
pound synthesis.
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