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Abstract: A directed cyclization-dehydration cas-
cade of a-aryloxy ketones and a-arylamino ketones
was efficiently catalyzed by a cationic iridium-
BINAP complex, which afforded various types of 4-
substituted benzofurans and indoles in high yields
with complete regioselectivity. The newly developed
protocol also enabled the enantioselective prepara-
tion of chiral 4-acetyloxindole using a chiral iridium
catalyst.
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Heterocycles are a ubiquitous class of compounds in
nature. Benzofuran and indole scaffolds are particu-
larly of great interest and are widespread in a myriad
of bioactive compounds and pharmaceutical agents.[1]

Therefore, many organic chemists have been prompt-
ed to develop various efficient synthetic protocols for
the preparation of these target compounds.[2,3] Among
these protocols, cyclodehydration, namely the cycliza-
tion-dehydration cascade of a-aryloxy ketones and a-
arylamino ketones is an attractive and reliable strat-
egy because (i) the starting materials can be readily
prepared, (ii) the C�H bond can be directly function-
alized in the cyclization process, and (iii) the waste
by-product is water.[4] However, substitution on the
arene moiety often invokes the issue of regioselectivi-
ty. The application to the synthesis of 4-substituted
benzoheteroles is especially challenging, because the
meta-substituted precursors tend to cyclize at the less
hindered ortho position, leading to the predominant
formation of 6-substituted benzoheteroles or a mix-
ture of 6-substituted and 4-substituted benzoheter-
oles.[5,6] Moreover, excess or stoichiometric amounts

of strong Brønsted acids or Lewis acids are required
in most cases.[7] Consequently, the development of
versatile alternatives using a mild catalyst for the se-
lective synthesis of 4-substituted benzoheteroles is
highly desired. We herein report the successful reali-
zation of this challenging transformation by cationic
iridium-catalyzed cyclodehydration using a directing
group. From the results obtained in this report, we as-
sumed that the installation of a directing group at the
meta position enabled carbon-iridium bond formation
at the congested ortho position through C�H bond
cleavage or an electrophilic metallation mecha-
nism.[8,9] Subsequently, intramolecular 1,2-addition to
a carbonyl moiety[10] and dehydration yielded 4-substi-
tuted benzoheteroles as the sole regioisomer
(Scheme 1).[11]

Our group has disclosed that cationic rhodium- and
iridium-biaryl diphosphine complexes can operate as
effective catalysts in the directed sp2 C�H bond acti-
vation of aryl ketones.[12] Very recently, we also realiz-
ed sp3 C�H bond activation of amides by cationic iri-
dium catalysis.[13] Therefore, these cationic metal spe-
cies were tested in the cyclization of 1-(3-acetylphe-

Scheme 1. A proposed mechanism for the iridium-catalyzed
directed cyclization-dehydration cascade of a-aryloxy ke-
tones and a-arylamino ketones.
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noxy)propan-2-one (1). Initial screening revealed that
the cationic iridium-BINAP complex afforded 4-ace-
tylbenzofuran 2 and benzofuranol 2’ in low yield at
95 8C (Table 1, entry 1), whereas the corresponding
rhodium catalyst did not afford any cyclized products.
A higher temperature (135 8C) improved the conver-
sion of aryloxy ketone 1 along with the complete de-
hydration of benzofuranol 2’ (Table 1, entry 2). Fur-
ther optimization of the reaction conditions also re-
vealed that the counteranion of the iridium complex
significantly affected the product yield (Table 1, en-
tries 3–5): the tetrakis ACHTUNGTRENNUNG[3,5-bis(trifluoromethyl)phenyl]-
borate anion (BARF) was found to be optimal and
benzofuran 2 was obtained in excellent yield without
the formation of undesired 6-substituted benzofuran
(Table 1, entry 5). Moreover, short-time synthesis was
achieved under microwave irradiation, using only
1 mol% of the catalyst (Table 1, entry 6). Although
the Ir+/PPh3 system afforded the product in accepta-
ble yield (77% NMR yield), ligands other than
BINAP and PPh3 were ineffective (see Table S1 in
the Supporting Information).

To shed light on the reaction mechanism, 1-phen-ACHTUNGTRENNUNGoxypropan-2-one, an electron-rich and directing
group-free variant, was subjected to cyclization under
the same reaction conditions as entry 5 in Table 1;
how ACHTUNGTRENNUNGever, in this reaction, the corresponding benzofur-
an was not obtained at all. This result suggests that
the present iridium-catalyzed cyclodehydration should
proceed via directed C�H bond cleavage or electro-

philic metallation, as depicted in Scheme 1, rather
than a Friedel–Crafts-type reaction.[14]

The directed cyclodehydration of several types of
a-aryloxy ketones was then examined under the es-
tablished iridium-based catalytic system (Table 2 and
Scheme 2). In all runs, efficient syntheses of 4-substi-
tuted benzofurans were achieved, along with com-
plete regioselectivity. Cyclization of a-aryloxy tert-
butyl ketone 3 and a-aryloxy phenyl ketone 5 success-
fully proceeded to afford the 4-acetylbenzofurans,
possessing a bulky substituent at the C-3 position, in
excellent yield (Table 2, entries 1 and 2). Substitution
at the a-position of the carbonyl moiety was tolerat-
ed: 2,3-dimethylbenzofuran 8, tricyclic benzofuran 10,
and 2-anisylbenzofuran 12 were obtained in high
yields (Table 2, entries 3–5).

Subsequently, the effect of the substituent at the
arene moiety was investigated. It was found that a
methoxy group could be installed on any position,
and the corresponding 4-acetylbenzofurans were effi-
ciently obtained as sole regioisomers (Table 2, en-
tries 6–8). Notably, in addition to the acetyl group,
ester and amide moieties also operated as effective di-
recting groups, leading to the selective formation of 4-
methoxycarbonylbenzofuran 20 and 4-acetylamino-
benzofuran 22 (Table 2, entries 9 and 10).[15] More-
over, the iridium catalyst promoted the double cyclo-
dehydration of 5-acetylresorcinol ether 23 to provide
4-acetylbenzodifuran 24 (Scheme 2).[16]

The current iridium catalysis was also applicable to
the directed cyclodehydration of a-arylaminoketones
(Scheme 3). As was the case for benzofuran synthesis,
several types of 4-acetylindoles were selectively ob-
tained in satisfactory yield. It is noteworthy that the
substrates possessing an amine moiety could be di-
rectly subjected to the reaction to yield protection-

Table 1. Optimization of the reaction conditions.[a]

Entry X[b] Yield of 2 [%][c] Yield of 2’ [%][c,d]

1[e] OTf 6 6
2 OTf 71 n.d.
3 BF4 48 4
4 SbF6 85 n.d.
5 BARF 94 n.d.
6[f] BARF 94 n.d.

[a] Unless otherwise noted, reaction conditions were as fol-
lows: substrate 1 (0.1 mmol), [Ir ACHTUNGTRENNUNG(cod)2]X (5 mmol), rac-
BINAP (5 mmol), PhCl (0.2 mL), 135 8C, 24 h.

[b] OTf= trifluoromethanesulfonate, BARF= tetrakis ACHTUNGTRENNUNG[3,5-
bis(trifluoromethyl)phenyl]borate.

[c] Isolated yield.
[d] n.d.=not detected.
[e] Performed in 1,2-dichloroethane at 95 8C.
[f] Substrate 1 (0.25 mmol), [Ir ACHTUNGTRENNUNG(cod)2]BARF (2.5 mmol), rac-

BINAP (2.5 mmol), PhCl (0.1 mL), 160 8C under micro-
wave irradiation (200 W), 20 min.

Scheme 2. Synthesis of benzodifuran 24 via the iridium-cata-
lyzed double cyclodehydration.

Scheme 3. Synthesis of unprotected 4-acetylindoles.
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free 4-acetylindoles, which is an apparently difficult
transformation in the case of strong acid catalysts.

Finally, the iridium-catalyzed cyclization of pyruv-ACHTUNGTRENNUNGamide derivative 33 was examined (Scheme 4). Intri-
guingly, dehydration did not proceed and the tert-al-
cohol moiety remained intact, resulting in the selec-
tive formation of chiral 4-acetyloxindole 34. To
extend this reaction to an enantioselective variant,
several chiral ligands were then examined. It was

found that the use of (S)-H8-BINAP was effective and
the product was afforded with acceptable enantiose-
lectivity.

In conclusion, we have discovered the high catalytic
activity of a cationic iridium-BINAP complex in the
directed cyclodehydration of a-aryloxy ketones. Vari-
ous types of substrates efficiently participated in the
transformation, affording the corresponding 4-substi-
tuted benzofurans with complete regioselectivity.

Table 2. Synthesis of 4-substituted benzofurans.[a]

Entry Substrate Product Yield [%][b]

1 95

2 94

3 88

4 84

5 87

6 87

7 15 16 (R1 =6-MeO) quant.
8 17 18 (R1 =7-MeO) 95

9 82

10 84

[a] Reaction conditions: substrate (0.1 mmol), [Ir ACHTUNGTRENNUNG(cod)2]BARF (5 mmol), rac-BINAP (5 mmol), PhCl (0.2 mL), 135 8C, 24 h.
[b] Isolated yield.
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Along with the acetyl group, ester and amide moieties
also functioned as directing groups. Moreover, the es-
tablished protocol was successfully applied to the syn-
thesis of protection-free 4-acetylindoles and the enan-
tioselective synthesis of chiral 4-acetyloxindole. Fur-
ther modification of the catalytic system, elucidation
of the detailed reaction mechanism, and application
to natural product synthesis are in progress.

Experimental Section

Typical Experimental Procedure (Table 1, entry 5)

[Ir ACHTUNGTRENNUNG(cod)2]BARF (6.7 mg, 5 mmol) and rac-BINAP (3.2 mg, 5
mmol) were placed in an oven-dried Schlenk tube, which
was then evacuated and backfilled with argon (�3). 1-(3-
Acetylphenoxy)propan-2-one (1, 19.3 mg, 0.1 mmol) and
PhCl (0.2 mL, pre-treated by argon bubbling) were added to
the reaction vessel. The solution was then stirred at 135 8C
for 24 h. The resultant mixture was cooled to room tempera-
ture and the solvent was evaporated. The crude products
were purified by thin-layer chromatography (hexane/ethyl
acetate=3:1) to yield analytically pure benzofuran 2 ; yield:
16.6 mg (94%).
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