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Abstract BF3·OEt2-mediated stereocontrolled annulation of 4-alkenols
affords sulfonyl 2,5-diaryltetrahydrofurans in good yields. The key syn-
thetic route combines the facile stereoselective reduction of α-styryl-β-
ketosulfones and an intramolecular Friedel–Crafts electrophilic cycliza-
tion of the resulting 4-alkenols. A plausible mechanism has been stud-
ied and proposed.

Key words 2,5-diaryltetrahydrofurans, reduction, 4-alkenols, β-keto-
sulfones, cyclization

The tetrahydrofuran moiety is an important component
in numerous diversified molecules with biological activities
of synthetic intermediates and natural products.1 Among
these building blocks, substituted 2,5-diaryltetrahydrofu-
ran can be widely found from natural sources and bioactive
molecules including manassantins A and B,2a,b virgatusin,2c–f

talaumidin2g and MK-287.2h,i As a result, numerous synthet-
ic approaches have been developed for the construction of
diversified 2,5-diaryltetrahydrofurans.2 For various proto-
cols on the synthesis of 2,5-diaryltetrahydrofurans 1, intra-

molecular cycloetherification of 1,4-butandiols and reduc-
tive cyclization of γ-hydroxyketones are common path-
ways. Synthetic routes to organometal (Mg, Cu or Zn)-
mediated nucleophilic addition of cyclic hemiacetals or lac-
tones have been documented (see Scheme 1).

However, the reported preparation of these derivatives
often presents drawbacks (e.g. multistep operations and
harsh conditions, poorer stereoselectivity), and this has en-
couraged organic researchers to explore more efficient syn-
thetic protocols. To the best of our knowledge, for the syn-
thesis of sulfonyl 2,5-diaryltetrahydrofurans, no examples
of the intramolecular electrophilic annulation of 4-alkenols
have been reported.

In continuation of our investigation into the synthetic
applications of β-ketosulfones,3 a three-step stereoselective
synthetic route to sulfonyl 2,5-diaryltetrahydrofurans 6 has
been developed, including (i) a K2CO3-mediated α-allylation
of β-ketosulfones 2 with styryl bromide 3 (prepared from
allylic bromination of α-methylstyrene with NBS in reflux-
ing CHCl3) in boiling acetone, (ii) a NaBH4-mediated stereo-
selective reduction of α-styryl-β-ketosulfones 4 in cooling
co-solvent of THF and MeOH (1:1) and (iii) an intramolecu-
lar BF3·OEt2-mediated stereocontrolled Friedel–Crafts an-

Scheme 1  Synthetic routes of 2,5-diaryltetrahydrofurans
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nulation of the resulting sulfonyl 4-alkenols 5 in CH2Cl2 at
25 °C (see Scheme 2).

After further comparison of literature and our previous
studies on the Lewis acid triggered annulation,3,4 substrate
4a was first examined. α-Styryl-β-ketosulfone 4a (Ar = Ar1 =
Ph; R = Tol) was chosen as the model’s starting material3f to
examine NaBH4-mediated stereoselective reduction. Under
the above conditions, 5a was isolated in a 90% yield. Ac-
cording to the Felkin–Anh model,5 the steric hindrance of
sulfonyl substituent should inhibit the carbonyl addition of
hydride such that the hydride should attack the carbonyl
face with the face with less repulsion to form sulfonyl 4-
alkenols 5a via a possible intermediate A. Next, intramolec-
ular annulation of 5a with BF3·OEt2 provided 6a in a 90%
yield. The possible mechanism should be initiated to form
B1 or B2 by complexation of a hydroxyl motif of 5a with
BF3·OEt2 via a chair conformation (Scheme 3). B1 should
form the preferred orientation with a syn-protonation due
to B2 providing more repulsion between the phenyl group
and the OBF3 complex. Proton exchange of B1 affords a ter-
tiary carbocation C, which, following an intramolecular ad-
dition and loss of BF3, is able to provide 6a (72%). The struc-

ture and relative stereochemistry of 6a were determined
from 1H NMR and J coupling analysis. In the 1H NMR spec-
trum, the equatorial proton (blue symbol) of C-2 shows a
doublet with a coupling constant J = 8.0 Hz at δ = 5.12 ppm,
which indicates that the proton (black symbol) of C-3 is
coupling with an axial position [δ = 3.99 (q, J = 8.0 Hz)]. The
structural frameworks of 6a (Figure 1) and 6b (Figure 2)
with trans-diphenyl substituents were determined by sin-
gle-crystal X-ray crystallography.6

Figure 1  X-ray crystal structure of 6a

Scheme 2  Our synthetic route to 6
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Scheme 3  Possible mechanism
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Figure 2  X-ray crystal structure of 6b
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However, 5a was converted slowly into 6a at 25 °C in the
presence of a CDCl3 solution. It is also very likely that the
trace acid in CDCl3 catalyzed the intramolecular annulation.
To prevent this unexpected result, 5a was immediately re-
acted with BF3·OEt2. With these results in hand, the one-pot
conversion from 4a into 6a was examined next (Table 1).

Table 1  One-Pot Conditionsa

Following the sequential reduction–hydroalkoxylation,
6a was isolated in a 75% yield over two steps via a one-pot
NaBH4 (3 equiv)-mediated reduction followed by treatment
of the resulting 5a with BF3·OEt2 (1.0 equiv). Compared
with the yield (65%) of the two divided steps, the one-pot
reaction condition could increase the efficiency of the over-
all yields of 6a (Table 1, entry 1). Furthermore, the amounts
(2.0 or 0.5 equiv) of BF3·OEt2, reaction solvents [CH2Cl2 or
(CH2Cl)2] and temperatures (25 °C or 84 °C) were also ex-
amined. However, attempts to provide a higher yield of 6a
were unsuccessful. In entry 2 (Table 1), no obvious yield
changes were observed when 2.0 equivalents of BF3·OEt2
were used. To decrease the amount of BF3·OEt2 (0.5 equiv),
6a was isolated in a 48% yield along with the recovery of 5a
(13%), as shown in entry 3 (Table 1). With a long reaction
time (40 h), a similar yield distribution was observed.
Changing the reaction solvent from CH2Cl2 to (CH2Cl)2, 6a
was produced in a 69% yield (see entry 4 in Table 1). After
elevating the temperature (r.t. → reflux), the desired 6a was
only isolated in a 40% yield (see entry 5 in Table 1). When
the reaction time was prolonged, a complex mixture was
isolated in a higher (43%) yield in boiling (CH2Cl)2 after 40

hours. As shown in entries 6 and 7 (Table 1), Brønsted acids,
such as p-TsOH and polyphosphoric acid (PPA), showed dif-
ferent catalytic activities. p-TsOH provided a similar result
with entry 4 (Table 1), but PPA provided unknown products.
On the basis of a higher yield and activity, we believe that
1.0 equivalent of BF3·OEt2 should be the optimal reagent
(Table 1, entry 1) after examining the formation of skeleton
6. With the one-pot reaction conditions in hand (Table 1,
entry 1, 4a → 6a), we further explored the scope for the
conversion of other substrates, and the results are shown in
Table 2. For the Ar, Ar1 and R groups of 4a–p, the aryl rings
(Ar = Ph, 4-FC6H4, Tol, 4-NO2C6H4, 4-CF3C6H4, 4-PhC6H4,
Naph; Ar1 = Ph, 4-FC6H4, 4-PhC6H4; R = Tol, Ph), with elec-
tron-neutral or electron-donating groups were well tolerat-
ed, providing the desired 6a–p in moderate to good yields
(70–82%).7

Table 2  Synthesis of 6a

In summary, we have developed a mild, facile and one-
pot synthesis of 2,5-diaryltetrahydrofurans 6 in good yields
via a NaBH4-mediated stereocontrolled reduction of α-sty-
ryl-β-ketosulfones 4 and an intramolecular BF3·OEt2-medi-
ated Friedel–Crafts electrophilic cyclization of the resulting
4-alkenols 5 under a reduction–hydroalkoxylation process.
A plausible mechanism has been discussed and proposed.

Entry Lewis acid (equiv), solvent, temp (°C) 6a (%)b

1 BF3·OEt2 (1.0), CH2Cl2, 25 75

2 BF3·OEt2 (2.0), CH2Cl2, 25 70

3 BF3·OEt2 (0.5), CH2Cl2, 25 48c (58)d

4 BF3·OEt2 (1.0), (CH2Cl)2, 25 69

5 BF3·OEt2 (1.0), (CH2Cl)2, 84 40e (26)f

6 p-TsOH (1.0), CH2Cl2, 25 63g

7 PPA (1.0), CH2Cl2, 25 –h

a Reaction conditions: (1) 4a (1.0 mmol), NaBH4 (3 equiv), MeOH–THF (1:1; 
10 mL), 0 °C, 1 h. (2) Resulting crude 5a, solvent (5 mL), 25 °C, 20 h.
b Isolated yields.
c Compound 5a was recovered (13%).
d Reaction time was 40 h and trace amounts of 5a were recovered.
e A complex mixture was isolated in 32% yield.
f Reaction time was 40 h and 43% of complex mixture was isolated.
g Compound 5a was recovered (10%).
h Unknown products were observed.
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Entry 4, Ar, Ar1, R 6, Yield (%)b

 1 4a, Ph, Ph, Tol 6a, 75

 2 4b, 4-FC6H4, Ph, Tol 6b, 70

 3 4c, 4-MeC6H4, Ph, Tol 6c, 70

 4 4d, 4-O2NC6H4, Ph, Tol 6d, 80

 5 4e, 4-F3CC6H4, Ph, Tol 6e, 82

 6 4f, 4-PhC6H4, Ph, Tol 6f, 73

 7 4g, Naph, Ph, Tol 6g, 76

 8 4h, Naph, 4-FC6H4, Tol 6h, 75

 9 4i, Naph, 4-PhC6H4, Tol 6i, 70

10 4j, Ph, 4-PhC6H4, Tol 6j, 73

11 4k, Tol, 4-PhC6H4, Tol 6k, 70

12 4l, 4-PhC6H4, 4-PhC6H4, Tol 6l, 76

13 4m, Ph, Ph, Ph 6m, 70

14 4n, 4-FC6H4, Ph, Ph 6n, 78

15 4o, 4-PhC6H4, Ph, Ph 6o, 75

16 4p, 4-PhC6H4, 4-PhC6H4, Ph 6p, 74
a Reaction conditions: (1) 4 (1.0 mmol), NaBH4 (3.0 equiv), MeOH (5 mL), 
THF (5 mL), 0 °C, 1 h (2) BF3·OEt2 (1.0 equiv), CH2Cl2 (5 mL), 25 °C, 20 h.
b Isolated yield.
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Further investigation regarding the synthetic applications
of β-ketosulfones will be conducted and published in due
course.
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67.46, 40.53, 27.80, 21.41. HRMS (ESI): m/z [M+ + 1] calcd for
C24H24FO3S: 411.1430; found: 411.1435. Single-crystal X-ray
diagram: crystal of compound 6b was grown by slow diffusion
of EtOAc into a solution of compound 6b in CH2Cl2 to yield col-
orless prisms. The compound crystallizes in the monoclinic

crystal system, space group P 21/c, a = 5.8096(3) Å, b =
15.7969(8) Å, c = 22.8181(12) Å, V = 2093.57(19) Å3, Z = 4, dcalcd
= 1.302 mg/cm3, F(000) = 864, 2θ range 1.568–26.542°, R indices
(all data) R1 = 0.0645, wR2 = 0.1086.
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