This article was downloaded by: [RMIT University] On: 03 September 2013, At: 22:51 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Convenient Synthesis of 2,4-Disubstituted Tetrahydrothiophenes from Mannich's Adducts

Hedi M'rabet^a , Mohamed Ould M'hamed^a & Mohamed Lotfi Efrit^a

^a Laboratory of Organic Synthesis and Heterocyclic Chemistry, Faculty of Science of Tunis, Department of Chemistry, Tunis, Tunisia Published online: 02 Apr 2009.

To cite this article: Hedi M'rabet , Mohamed Ould M'hamed & Mohamed Lotfi Efrit (2009) Convenient Synthesis of 2,4-Disubstituted Tetrahydrothiophenes from Mannich's Adducts, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 39:9, 1655-1665, DOI: 10.1080/00397910802573148

To link to this article: http://dx.doi.org/10.1080/00397910802573148

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views

expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u> Synthetic Communications[®], 39: 1655–1665, 2009 Copyright © Taylor & Francis Group, LLC ISSN: 0039-7911 print/1532-2432 online DOI: 10.1080/00397910802573148

Convenient Synthesis of 2,4-Disubstituted Tetrahydrothiophenes from Mannich's Adducts

Hedi M'rabet, Mohamed Ould M'hamed, and Mohamed Lotfi Efrit

Laboratory of Organic Synthesis and Heterocyclic Chemistry, Faculty of Science of Tunis, Department of Chemistry, Tunis, Tunisia

Abstract: Ammonium salts of β -functionalized allylic amines **1** were successfully employed as electrophilic agents with functional thiols. The obtained intermediate **2** underwent intramolecular cyclization in the presence of potassium *tert*-butoxide to afford 2,4-disubstituted tetrahydrothiophenes **3**.

Keywords: Mannich's adduct, mercaptoacetonitrile, methyl mercaptoacetate, tetrahydrothiophene

INTRODUCTION

We have recently reported^[1,2] that the ammonium salts derived from Mannich's adducts constitute interesting precursors for allylphosphonates functionalized at the beta position. The latter were obtained by nucleophilic displacement of the ammonium moiety by the phosphonate group.

In the present work, we intend to examine the extension of the reactivity of these substrates to functionalized thiols. The nucleophilic substitution of the ammonium group leads to the formation of a new series of methylprop-2-enylthioacetonitrile and methyl prop-2-enylthioacetate **2**. These intermediates are easily converted, under basic conditions, into substituted tetrahydrothiophene **3** (Scheme 1).

Received September 9, 2008.

Address correspondence to Mohamed Lotfi Efrit, Laboratory of Organic Synthesis and Heterocyclic Chemistry, Faculty of Science of Tunis, Department of Chemistry, Campus Academic, 2092 El Manar, Tunis, Tunisia. E-mail: mohamedlotfi.efrit@fst.rnu.tn

Scheme 1. Allylamines 1, precursors of thioallyls 2 and thiophens 3.

Such heterocyclic compounds exhibit a wide spectrum of biological activities,^[3,4] are useful building blocks in the synthesis of a variety of natural products,^[5] and are widely used as ligands in asymmetric catalysis.^[6,7]

RESULTS AND DISCUSSION

Alkyl mercaptoacetates and mercaptoacetonitrile are extensively used in heterocyclic synthesis. These reactants possess dual reactive properties. The thiol's end represents the nucleophilic site, and the nitrile and or ester constitute the electrophilic center. Reactions involving these species are believed to start by a nucleophilic attack of the thiol followed by a rather unexpected attack of the carbon α to the nitrile or ester group. The latter seems to lose reactivity in favor of the α -carbon particularly under basic conditions.^[8–10]

Synthesis of Prop-2-enylthioacetonitriles and Methyl Prop-2enylthioacetates 2

Mannich's ammonium salt adducts 1 react with methyl mercaptoacetate or mercaptoacetonitrile to form the corresponding intermediate 2 (Scheme 2) in fair to excellent yields (Table 1). Considering the steric bulk involved, the mechanism by which the substitution proceeds is believed to be $S_N 2'$.

Scheme 2. Functionalized thioallyls obtained from allylamines 1.

Substrate 1	А	Product 2	EWG	Yield ^a	Product 3	Yield ^{<i>a,b</i>}	Cis–trans
1a	CN	2a ₁	CN	78	3a ₁	62	31:69
		$2a_2$	CO ₂ Me	91	3a ₂	75	30:70
1b	CO ₂ Et	$2b_1$	CN	55	3b ₁	56	30:70
		$2b_2$	CO ₂ Me	65	3b ₂	66	32:68
1c	PO(OEt) ₂	2c ₁	CN	79	3c ₁	53	34:66
		$2c_2$	CO ₂ Me	82	3c ₂	62	35:65
1d	<i>p</i> .NO ₂ Ph	$2d_1$	CN	71	$3d_1$	44	29:71
		$2d_2$	CO ₂ Me	75	3d ₂	59	27:73

Table 1. Cis-trans ratio and yields obtained with the starting products 1a-d

^aYields obtained after column chromatography.

^bYields obtained with respect to products 2.

The structures of compounds **2** were determined by analytical means. Indeed, ¹H NMR reveals the absence of the morpholinylic hydrogens and the appearance of the methylenic protons α to the electron-withdrawing groups (CN, CO₂Me).

Synthesis of Tetrahydrothiophenes 3

Presenting highly activated methylenic hydrogens, compounds 2 are easily converted into reactive carbanionic species when subjected to potassium *tert*-butoxide.

We anticipated that the carbanion would autocondense on the nitrile or the ester group respectively in **2a** and **2b** to form the corresponding aromatic five-membered ring thiophene derivatives.

However, the analysis of infrared (IR) and NMR data suggested that an intramolecular Michael addition has occurred instead to lead to the formation of tetrahydrothiophene **3**. The latter are obtained in a mixture of *cis* and *trans* diastereomers (Scheme 3).

The *cis/trans* ratio (Table 1) is apparently dictated by the steric interactions between the EWG on one side and the A group on the other.

The obtaining of this *cis/trans* ratio could be explained by the more favorable carbanion attack of the vinylic less-hindered side leading to the major *trans* isomer.

To the best of our knowledge, with the exception of compound $3b_2$, the rest of the series has not been described in the literature.^[11] The *cis/trans* ratios were determined after isolating the individual compounds $(3a_1, 3a_2, \text{ and } 3b_1)$ or by ¹H and ³¹P NMR for the rest of the tetrahydrothiophenes. The attribution of the isomers was based on the few examples reported in the literature. In general observation, the protons of the *trans* isomer appear at higher chemical shift than their corresponding *cis* counterparts.^[12]

CONCLUSION

A convenient route to 2,4-disubstituted tetrahydrothiophenes has been described. This synthesis constitutes a cornerstone in the access to multi-functionalized tetrahydrothiophenes, highly desired building blocks in the synthesis of natural products. A more comprehensive study is being developed 1) to investigate the regioselectivity outcome of the intramole-cular condensation and 2) to examine a kinetic versus thermodynamic control of the reaction as well as a possible interconversion between the diastereomers.

EXPERIMENTAL

Reactions were monitored by thin-layer chromatography (TLC) using ether-petroleum ether 60/40 (v/v) as eluent system.

Substrates 1 and their corresponding salts were prepared as described in Ref. 13 and 1, respectively.

IR spectra were recorded in chloroform solution on a Perkin-Elmer Paragon 1000 PC spectrometer with a standard error of 4 cm^{-1} .

 1 H, 13 C and ${}^{\overline{3}1}$ P NMR spectra were recorded in CDCl₃ on a 300-MHz Bruker instrument. Tetramethylsilane (TMS) was used as an internal reference for 1 H and 13 C. Phosphoric acid solution (80%) was used as external reference for 31 P spectra. Chemical shifts are reported in parts per million (ppm), and the following abbreviations were used for 1 H NMR attributions: s: singlet, d: doublet, dd: doublet of doublet, t: triplet, q: quartet, m: multiplet, and ABd: doublet of AB system.

Mass spectra were obtained by the electronic impact technique and recorded on an Agilent 5975B spectrometer (70 eV). The analyses were

2,4-Disubstituted Tetrahydrothiophenes

performed at the National Institute of Research in Physical and Chemical Analyses, Tunis, Tunisia.

Melting points were determined by capillary tube on a Buchi instrument.

Synthesis of Compounds 2

Methyl mercaptoacetate or mercaptoacetonitrile (10 mmol) was added dropwise to an ethanol solution (50 mL) of ammonium salt of substrate **1** (12 mmol). The mixture is allowed to stir for 24 h at room temperature. The residual insoluble salt was filtered, and the filtrate was concentrated in vacuuo. The obtained residue is diluted in 20 mL of water and then extracted with CHCl₃ (3×30 mL). The organic extracts were combined and dried over MgSO₄. The chloroform was removed, and then residue was chromatographed on silica gel (ether-pet. ether: 60/40 v/v).

Data

Compound 2a1: 2-Cyanoprop-2-enylthioacetonitrile

Oil. IR (CHCl₃): $\nu_{CN} = 2110$ and 2220 cm^{-1} . ¹H NMR (CDCl₃): 6.01 (s, 1H); 5.91 (s, 1H); 3.46 (s, 2H, -<u>CH</u>₂-S); 3.24 (s, 2H, -<u>CH</u>₂N). ¹³C NMR (CDCl₃): (C1), 35.23; (C2), 118.20; (C3), 134.36; (C4), 18.06; (C5), 115.77; (C8), 117.01. EIMS m/z (relative intensity): 138 (M⁺⁻, 53); 85 (100); 52 (22); 54 (44); 45 (37). HRMS calcd. for C₆H₆N₂S m/z 138.0252; found m/z 138.0245.

Compound 2a₂: Methyl 2-Cyanoprop-2-enylthioacetate

Oil. IR (CHCl₃): $\nu_{CN} = 2227 \text{ cm}^{-1}$; $\nu_{C=O} = 1736 \text{ cm}^{-1}$. ¹H NMR (CDCl₃); 6.02 (s, 1H); 5.92 (s, 1H); 3.74 (s, 3H, $-O-CH_3$); 3.45 (s, 2H, $-CH_2-S$); 3.20 (s, 2H, $-CH_2-CO_2Me$). ¹³C NMR (CDCl₃): (C1), 35.04; (C2), 118.81; (C3), 132.55; (C4), 31.33; (C5), 117.38; (C8), 169.98; (C9), 52.40.

Compound 2b1: 2-Ethoxycarbonylprop-2-enylthioacetonitrile

Oil. IR (CHCl₃); $\nu_{CN} = 2285 \text{ cm}^{-1}$; $\nu_{C=O} = 1716 \text{ cm}^{-1}$. ¹H NMR (CDCl₃): 6.30 (s, 1H); 5.75 (s, 1H); 4.28–4.21(q, 2H,–O–<u>CH</u>₂–CH₃, J = 6.00 Hz); 3.60 (s, 2H, –<u>CH</u>₂–S); 3.30 (s, 2H, –<u>CH</u>₂–CN); 1.34–1.30 (t, 3H, O-CH₂– <u>CH</u>₃, J = 6.00 Hz). ¹³C NMR (CDCl₃): (C1), 32.62; (C2), 127.53; (C3), 135.28; (C4), 16.30; (C5), 165.34; (C6), 60.77; (C7), 14.24; (C8), 116.32. Compound 2b₂: Methyl 2-Ethoxycarbonylprop-2-enylthioacetate

Oil. IR (CHCl₃): $\nu_{C=O} = 1716$ and 1627 cm^{-1} . ¹H NMR (CDCl₃); 6.24 (s, 1H); 5.70 (s, 1H); 4.28–4.20 (q, 2H, -O-<u>CH</u>₂-CH₃, J = 6.00 Hz); 3.73 (s, 3H, -O-<u>CH</u>₃); 3.51 (s, 2H, -<u>CH</u>₂-S); 3.17 (s, 2H, -<u>CH</u>₂-CO₂Me); 1.34–1.28 (t, 3H, O-CH₂-<u>CH</u>₃, J = 6.00 Hz). ¹³C NMR (CDCl₃): (C1), 34.09; (C2), 127.37; (C3), 135.89; (C4), 33.24; (C5), 166.05; (C6), 60.49; (C7), 14.22; (C8), 170.55; (C9), 52.65. EIMS m/z (relative intensity): 218 (M⁺, 19); 186 (34); 172 (38); 159 (26); 145 (98); 99 (100); 85 (23); 74 (27); 59 (51); 45 (48); 39 (22). HRMS calcd. for C₉H₁₄O₄S m/z 218.0613; found m/z 218.0622.

Compound 2c₁: 2-Diethoxyphosphorylprop-2-enylthioacetonitrile

Oil. IR (CHCl₃): $\nu_{CN} = 2246 \text{ cm}^{-1}$. ³¹P NMR (CDCl₃): 16.95. ¹H NMR (CDCl₃): 6.24–6.10 (d, 1H, ³ $J_{PH} = 21.00 \text{ Hz}$); 6.12–5.97 (d, 1H, ³ $J_{PH} = 45.01 \text{ Hz}$); 4.15–4.11 (m, 4H, 2xO-<u>CH</u>₂-CH₃), 3.61–3.56 (d, 2H, -CH₂-S-, ³ $J_{PH} = 15.00 \text{ Hz}$); 3.33 (d, 2H, -CH₂-N); 1.88–1.33 (m, 6H, 2xO-CH₂-<u>CH₃</u>). ¹³C NMR (CDCl₃); (C1: d, ² $J_{PC} = 13.58 \text{ Hz}$), 33.64; (C2: d, ¹ $\overline{J_{PC}} = 178.87 \text{ Hz}$), 134.46; (C3: d, ² $J_{PC} = 14.34 \text{ Hz}$), 132.49; (C4), 33.23; (C6: d, ² $J_{PC} = 6.23$), 62.34; (C7), 16.23; (C8), 116.14.

Compound 2c₂: Methyl 2-Diethoxyphosphorylprop-2-enylthioacetate

Oil. IR (CHCl₃); $\nu_{C=O} = 1733 \text{ cm}^{-1}$. ³¹P NMR (CDCl₃): 17.49. ¹H NMR (CDCl₃); 6.21–6.14 (d, 1H, ³ $J_{PH} = 21.00 \text{ Hz}$); 6.12–5.96 (d, 1H, ³ $J_{PH} = 48.02 \text{ Hz}$); 4.13–4.09 (m, 4H, 2xO-CH₂-CH₃); 3.73 (s, 3H, –O-CH₃); 3.51–3.47 (d, 2H, -CH₂-S-, ³ $J_{PH} = 12.00 \text{ Hz}$); 3.21 (s, 2H, –CH₂-CO₂Me); 1.37–1.32 (m, 6H, 2xO-CH₂-CH₃). ¹³C NMR (CDCl₃); (C1: d, ² $J_{PC} = 75.47 \text{ Hz}$): 33.27; (C2: d, ¹ $J_{PC} = 175.85 \text{ Hz}$): 134.69; (C3: d, ² $J_{PC} = 12.07 \text{ Hz}$), 131.56; (C4), 33.18; (C6: d, ² $J_{PC} = 5.28$), 61.75; (C7), 16.03; (C8), 170.12; (C9), 51.85.

Compound 2d₁: 2-(p-Nitrophenyl)prop-2-enylthioacetonitrile

Solid. Mp = 78–79°C. IR (CHCl₃): ν_{CN} = 2360 cm⁻¹. ¹H NMR (CDCl₃): 8.23–7.61 (m, 4H, -Ph-NO₂); 5.71 (s, 1H); 5.53 (s, 1H); 3.85 (s, 2H, -<u>CH₂-S</u>); 3.24 (s, 2H, -<u>CH₂-CN</u>). ¹³C NMR (CDCl₃): (C_{arom}), 147.72–123; (C1), 36.50; (C2), 144.66; (C3), 119.93; (C4), 16.30; (C8), 116.06.

2,4-Disubstituted Tetrahydrothiophenes

Compound 2d₂: Methyl 2-(p-Nitrophenyl)prop-2-enylthioacetate

Solid. Mp = 80–81°C. IR (CHCl₃): $\nu_{C=O} = 1742 \text{ cm}^{-1}$. ¹H NMR (CDCl₃); 8.20-7.62 (m, 4H, -Ph-NO₂); 5.64 (s, 1H); 5.46 (s, 1H); 3.76 (s, 3H, -O-CH₃); 3.74 (s, 2H, -CH₂-S); 3.19 (s, 2H, -CH₂-CO₂Me). ¹³C NMR (CDCl₃): (C_{arom}), 145.42–123; (C1), 36.55; (C2), 147.25; (C3), 119.26; (C4), 33.35; (C8), 170.40; (C9), 52.26.

Synthesis of Compounds 3

Substrate 2 (5 mmol in 5 mL of THF) was added, dropwise and with stirring, to a cooled THF solution of potassium *tert*-butoxide (8 mmol, in 10 mL THF) at -78° C under nitrogen. When all substrate 2 has been added, the reaction mixture was allowed to reach room temperature. The reaction was allowed to stir for an additional 4h, after which it was hydrolyzed with 0.5 N HCl, and the stirring was continued for 20 min. The mixture was then extracted with diethyl ether (3 × 10 mL).

The organic extracts were combined and dried over MgSO₄. After removal of the solvents, the crude material was subjected to chromatography. Two consecutive columns were performed to separate the diastereomers **3**. The first column was eluted with an isocratic mixture of diethylether–petroleum ether mixture (60: 40 v/v), whereas the second was subjected to a gradient of polarity 40/60 to 60/40 of diethylether– petroleum ether mixture.

Data

Compound 3a1: cis-Tetrahydrothiophene-2,4-dicarbonitrile

Oil. IR (CHCl₃): $\nu_{CN} = 2346$ and 2399 cm^{-1} . ¹H NMR (CDCl₃): 4.24–4.19 (dd, 1H, CN-<u>CH</u>-S-, J = 3.00 Hz); 3.52-3.40 (m, 1H, -CH₂-<u>CH</u>-CH₂-, 1H, - S-<u>CH₂-CH-</u>); 3.24–3.15 (m, 1H, -S-<u>CH₂-CH-</u>); 2.75–2.65 (m, 1H, -CH-<u>CH₂-CH-</u>); 2.63–2.48 (m, 1H, CH-<u>CH₂-CH-</u>). ¹³C NMR (CDCl₃): (C1), 31.12; (C2), 35.78; (C3), 32.08; (C4), 39.95; (C5), 117.92; (C8), 118.85.

Compound 3a1: trans-Tetrahydrothiophene-2,4-dicarbonitrile

Oil. IR (CHCl₃); $\nu_{\rm CN} = 2346$ and $2399 \,{\rm cm^{-1}}$. ¹H NMR (CDCl₃): 4.21–4.17 (dd, 1H, CN-CH-S-, $J = 3.00 \,{\rm Hz}$); 3.49-3.39 (m, 1H, -CH₂-CH-CH₂-CH₂-CH-); 3.25–3.17 (m, 1H, -S-CH₂-CH-); 2.74–2.66 (m, 1H, -CH-CH₂-CH-); 2.60–2.50 (m, 1H, CH-CH₂-CH-). ¹³C NMR

(CDCl₃): (C1), 30.35; (C2), 35.09; (C3), 32.26; (C4), 39.36; (C5), 118.17; (C8), 119.02.

Compound 3a₂: cis-Methyl 4-Cyanotetrahydrothiophene-2-carboxylate

Oil. IR (CHCl₃): $\nu_{CN} = 2399 \text{ cm}^{-1}$; $\nu_{C=O} = 1735 \text{ cm}^{-1}$. ¹H NMR (CDCl₃): 4.09–4.03 (dd, 1H, -<u>CH</u>-CO₂Me, J = 3.02 Hz); 3.39 (s, 3H, -CO₂Me); 3.60–3.46 (m, 1H, -CH-CN); 3.30–3.06 (ABd, 2H, -S-<u>CH</u>₂-CH-, J = 9.02 Hz); 2.77–2.71 (m, 1H, -CH-<u>CH</u>₂-CH-); 2.18–2.14 (m, 1H, CH-<u>CH</u>₂-CH-). ¹³C NMR (CDCl₃): (C1), 35.24; (C2), 32.74; (C3), 36.61; (C4), 53.05; (C5), 118.91; (C8), 171.83; (C9), 46.08.

Compound **3a₂**: *trans*-Methyl 4-Cyanotetrahydrothiophene-2-carboxylate

Oil. IR (CHCl₃): $\nu_{CN} = 2399 \text{ cm}^{-1}$; $\nu_{C=O} = 1735 \text{ cm}^{-1}$. ¹H NMR (CDCl₃): 4.07–4.04 (dd, 1H, -<u>CH</u>-CO₂Me, J = 3.00 Hz); 3.37 (s, 3H, -CO₂Me); 3.54–3.44 (m, 1H, -CH-CN); 3.29–3.07 (ABd, 2H, -S-<u>CH</u>₂-CH-, J = 9.00 Hz); 2.76–2.69 (m, 1H, -CH-<u>CH</u>₂-CH-); 2.21–2.13 (m, 1H, CH-<u>CH</u>₂-CH-). ¹³C NMR (CDCl₃): (C1), 34.26; (C2), 32.29; (C3), 36.92; (C4), 52.80; (C5), 118.98; (C8), 172.68; (C9), 45.40. EIMS m/z (relative intensity): 171 (M⁺, 24); 112 (100); 85 (31); 45 (14). HRMS calcd. for C₇H₉NO₂S m/z 171.0354, found m/z 171.0349.

Compound 3b1: cis-Ethyl 5-Cyanotetrahydrothiophene-3-carboxylate

Oil. IR (CHCl₃): $\nu_{\rm CN} = 2399 \,{\rm cm}^{-1}$; $\nu_{\rm C=O} = 1731 \,{\rm cm}^{-1}$. ¹H NMR (CDCl₃): 4.25–4.18 (q, 2H, O-<u>CH</u>₂-CH₃, $J = 6.00 \,{\rm Hz}$); 4.07–4.02 (dd, 1H, CN-<u>CH</u>-S-, $J = 3.00 \,{\rm Hz}$); 3.41–3.38 (m, 1H, -CH₂-<u>CH</u>-CH₂-, 1H, -S-<u>CH</u>₂-CH-); 3.19–3.15 (m, 1H, -S-<u>CH</u>₂-CH-); 2.65–2.58 (m, 2H, -CH-<u>CH</u>₂-CH-); 1.32–1.27 (t, 3H, O-CH₂-CH3, $J = 6.00 \,{\rm Hz}$). ¹³C NMR (CDCl₃): (C1), 31.91; (C2), 48.68; (C3), 38.28; (C4), 34.65; (C5), 170.92; (C6), 61.77; (C7), 14.14; (C8), 119.67.

Compound 3b1: trans-Ethyl 5-Cyanotetrahydrothiophene-3-carboxylate

Oil. IR (CHCl₃); $\nu_{CN} = 2399 \text{ cm}^{-1}$; $\nu_{C=O} = 1731 \text{ cm}^{-1}$. ¹H NMR (CDCl₃): 4.23–4.16 (q, 2H, O-<u>CH</u>₂-CH₃, J = 6.00 Hz); 4.11–4.08 (dd, 1H, CN-<u>CH</u>-S-, J = 3.00 Hz); $\overline{3.39}$ –3.30 (m, 1H, -CH₂-<u>CH</u>-CH₂-, 1H, -S-<u>CH</u>₂-CH-); 3.25–3.21 (m, 1H, -S-<u>CH</u>₂-CH-); $\overline{2.57}$ –2.52

(m, 2H, -CH-<u>CH</u>₂-CH-); 1.31–1.26 (t, 3H, O-CH₂-CH₃, J = 6.00 Hz). ¹³C NMR (CDCl₃): (C1), 32.18; (C2), 47.58; (C3), 38.34; (C4), 34.35; (C5), 171.32; (C6), 61.55; (C7), 14.33; (C8), 120.16.

Compound 3b₂: Ethyl Methyl Tetrahydrothiophene-2,4-dicarboxylate

Oil. IR (CHCl₃); $\nu_{C=O} = 1718 \text{ cm}^{-1}$ wide. ¹H NMR (CDCl₃): 4.46–4.33 (m, 2H, 2x-CH-CO₂Me); 4.23–4.17 (m, 4H, 2x-O-CH₂-CH₃); 3.37 (s, 3H, -CO₂Me); 3.36 (s, 3H, -CO₂Me); 3.33–3.30 (m, 2H, 2x-S-CH₂-CH-); 2.95–2.92 (m, 2H, 2x-S-CH₂-CH-); 2.46–2.44 (m, 4H, 2x-CH-CH₂-CH-); 2.34–2.30 (m, 2H, 2x-CH₂-CH-); 1³C NMR (CDCl₃): (C1), 34.15, 34.08; (C2), 35.55, 35.12; (C3), 36.76, 36.17 (C4), 55.39, 55.17; (C5), 172.93, 172.23; (C6), 60.88, 60.62; (C7), 14.18, 14.16; (C8), 170.22, 169.92; (C9), 52.78, 52.24.

Compound $3c_1$: 4-Diethoxyphosphoryltetrahydrothiophene-2carbonitrile

Oil. IR (CHCl₃): $\nu_{CN} = 2239 \text{ cm}^{-1}$. ³¹P NMR (CDCl₃): 25.14 ; 25.06. ¹H NMR (CDCl₃): 4.18–4.13 [m, 2H, 2x-<u>CH</u>-CN, 8H, 2x(-O-<u>CH</u>₂-CH₃)₂]; 3.27–3.13 (m, 2H, 2x-S-CH₂-<u>CH</u>-, 2H, 2x-S-<u>CH</u>₂-CH); 2.79–2.54 (m, 2H, 2x-S-<u>CH</u>₂-CH, 2H, 2x-CH₂-<u>CH</u>-CH₂-); 2.30–2.23 (m, 2H, 2x-CH-<u>CH</u>₂-CH-); 1.37–1.33 (m, 12H, 2x-O-CH₂-<u>CH</u>₃). ¹³C NMR (CDCl₃): (C1: 2xd, ²J_{PC} = 36.98 Hz), 33.99; (C2: 2xd, ⁻¹J_{PC} = 140.38 Hz), 39.95; (C3: 2xd, ²J_{PC} = 21.88 Hz): 37.81; (C4), 33.48, 32.59; (C6: 2xd, ²J_{PC} = 6.79 Hz), 62.62; (C7), 16.62, 16.61; (C8), 120.41, 119.41. EIMS m/z (relative intensity): 249 (M⁺⁻, 39); 193 (12); 138 (56); 111 (100); 82 (26); 45 (14). HRMS calcd. for C₉H₁₆NO₃PS m/z 249.0589; found m/z 249.0595.

Compound **3c**₂: Methyl 4-Diethoxyphosphoryltetrahydrothiophene-2-carboxylate

Oil. IR (CHCl₃): $\nu_{C=0} = 1725 \text{ cm}^{-1}$. ³¹P NMR (CDCl₃): 28.94; 28.35. ¹H NMR (CDCl₃): 4.19–3.79 [m, 2H, 2x-CH-CO₂Me, 8H, 2x(-O-CH₂-CH₃)₂]; 3.74 (s, 3H, -OCH₃); 3.73 (s, 3H, -OCH₃); 3.11–3.04 (m, 2H, 2x-S-CH₂-CH-, 2H, 2x-S-CH₂-CH); 2.69–2.64 (m, 2H, 2x-S-CH₂-CH, 2H, 2x-CH₂-CH-CH₂-); 2.08–2.04 (m, 2H, 2x-CH-CH₂-CH-); 1.36–1.31 ^{13}C 2x-O-CH₂-CH₃). NMR $(CDCl_3)$: (m, 12H, (C1: 2xd. ${}^{2}J_{PC} = 40.00 \text{ Hz}$, 32.46; (C2: 2xd, ${}^{1}J_{PC} = 144.91 \text{ Hz}$), 41.65; (C3: 2xd, ${}^{2}J_{PC} = 18.11 \text{ Hz}$, 34.54; (C4), 48.92, 47.71; (C6: 2xd, ${}^{2}J_{PC} = 6.81 \text{ Hz}$), 62.52; (C7), 16.59, 16.57; (C8), 174.79, 173.86; (C9), 42.55, 31.63.

Compound 3d₁: 4-(p-Nitrophenyl)tetrahydrothiophene-2-carbonitrile

Solid. Mp = 96–97°C. IR (CHCl₃): $\nu_{CN} = 2399 \text{ cm}^{-1}$. ¹H NMR (CDCl₃): 8.23–7.46 (m, 4H); 4.20–4.15 (m, 2H, 2xCN-<u>CH</u>-S-); 3.55–3.51 (m, 2H, 2x-CH₂-<u>CH</u>-CH₂-); 3.29–3.24 (m, 4H, 2x-S-<u>CH</u>₂-CH-); 2.90–2.85 (m, 2H, 2x-CH-<u>CH</u>₂-CH-); 2.43–2.35 (m, 2H, 2x-CH-<u>CH</u>₂-CH-); ¹³C NMR (CDCl₃): (C_{arom}), 147.34–123.86; (C1), 33.79, 33.53; (C2), 49.62, 49.32; (C3), 41.67, 40.89; (C4), 31.62, 31.22; (C8), 119.32, 118.97.

Compound **3d**₂: Methyl 4-(*p*-Nitrophenyl)tetrahydrothiophene-2carboxylate

Solid. Mp = 90–91°C. IR (CHCl₃): $\nu_{C=O} = 1733 \text{ cm}^{-1}$. ¹H NMR (CDCl₃): 8.20–7.46 (m, 4H); 4.18–4.12 (dd, 1H, CN-<u>CH-S-</u>, J = 6,00 Hz); 4.06–4.03 (dd, 1H, CN-<u>CH-S-</u>, J = 3.00 Hz); 3.77 (s, 3H, -OCH₃); 3.76 (s, 3H, -OCH₃); 3.56–3.50 (m, 1H, -CH₂-<u>CH-CH₂-</u>); 3.31–3.25 (m, H, -CH₂-<u>CH-CH₂-</u>); 3.19–3.10 (m, 2H, -S-<u>CH₂-CH-</u>); 3.06–2.95 (m, 2H, -CH-<u>CH₂-CH-</u>); 2.78–2.72 (m, H, -CH-CH₂-CH-); 2.67–2.59 (m, H, -CH-CH₂-CH-); 2.51–2.39 (m, H, -CH-CH₂-CH-); 2.19–2.08 (m, H, -CH-CH₂-CH-); 2.51–2.39 (m, H, -CH-CH₂-CH-); 2.19–2.08 (m, H, -CH-CH₂-CH-). ¹³C NMR (CDCl₃): (\overline{C}_{arom}), 149.06–123.87; (C1), 38.99, 38.39; (C2), 47.17, 46.71; (C3), 39.83, 39.64; (C4), 53.07, 52.64; (C8), 173.90, 173.29; (C9), 50.69, 50.38.

REFERENCES

- Mrabet, H.; Zantour, H. Synthèse et réactivité des 2-(N,N-dialkylaminométhyl) acrylates d'éthyle: Nouvelle voie d'accès aux dihydropyrazolopyrimidinones. J. Soc. Alger. Chim. 2004, 14, 197–204.
- Yaccoubi, F.; Efrit, M. L.; Zantour, H. Synthèse d'aminopyrazolines phosphonométhylées. J. Soc. Chim. Tunisie 2005, 7, 89–96.
- Brandau, S.; Maerten, E.; Jorgensen, K. A. Asymmetric synthesis of highly functionalized tetrahydrothiophenes by organocatalytic domino reactions. *J. Am. Chem. Soc.* 2006, *128*, 14986–14991.
- Take, Y.; Oogose, K.; Kubo, T.; Inouye, Y.; Nakamura, S.; Kitahara, Y.; Kubo, A. Comparative study on biological activities of heterocyclic quinones and streptonigrin. J. Antibiot. 1987, 40 (5), 679–684.
- Williams, D. R.; Jass, P. A.; Tse, H.-L. A.; Gaston, R. D. Total synthesis of (+)- breynolide. J. Am. Chem. Soc. 1990, 112, 4552–4554.
- Mukaiyama, T.; Asanuma, H.; Hachiya, I.; Harada, T.; Kobayashi, S. An efficient asymmetric aldol reaction promoted by a chiral tin(II) Lewis acid consisting of tin(II) triflate, (R)-2-[N-1-naphthylamino)methyl]tetrahydrothiophene and a tin(IV) compound. *Chem. Lett.* **1991**, *7*, 1209–1212.

2,4-Disubstituted Tetrahydrothiophenes

- Zanardi, J.; Lamazure, D.; Miniere, S.; Reboul, V.; Metzner, P. First enantioselective synthesis of vinyl oxiranes from aldehydes and ylides generated from allyl halides and chiral sulfides. *J. Org. Chem.* 2002, 67, 9083–9086.
- 8. Reinhoudt, D. N.; Trompenaars, W. P.; Geevers, J. Synthesis of heteroaromatic compounds with enamine reactivity. *Synthesis* **1978**, 368–370.
- Sosnovskikh, V. Y.; Usachev, B. I.; Sevenard, D. V.; Lork, E.; Röschenthaler, G.-V. Unexpected synthesis of dihydrothienocoumarin derivatives from 2trifluoromethylchromones and ethyl mercaptoacetate. *Tetrahedron Lett.* 2001, 42 (30), 5117–5119.
- (a) Dridi, K.; El Efrit, M. L.; Baccar, B.; Zantour, H. Reaction of mercaptoacetate and halides containing activated methylenes with thiocarbamoylimidates: A novel approach to the synthesis of aminothiazole derivatives. *Synth. Commun.* 1998, 28 (1), 167; (b) Dridi, K.; El Efrit, M. L.; Zantour, H. Action des mercaptoacétates d'alkyles sur les imidates N-cyanés, N-acylés et N-éthoxycarbonylés: Synthèse d'alcoxycarbonylthiazoles. *Phosphorus, Sulfur Silicon. Relato. Elem.* 1998, 134–135, 407–412, (c) Dridi, K.; El Efrit, M. L.; Zantour, H. Condensation de mercaptoacétates et de mercaptopropionates d'alkyle sur les 2-dialkylaminométhylpropènenitriles. *J. Soc. Chim. Tunisie* 2005, 7, 43–50.
- 11. Zbigniew, D. Synthesis and stereochemistry of 2,4-disubstituted tetrahydrothiophenes. *Bull. Pol. Acad. Sci. Chem.* **1986**, *34*, 225–227.
- Hauptman, E.; Shapiro, R.; Marshall, W. Synthesis of chiral bis(phosphinite) ligands with a tetrahydrothiophene backbone: Use in asymmetric hydrogenation. *Organometallics* 1998, *17*, 4976–4982.
- Krawczyk, H. A new access to 2-(chlororomethyl)acrylonitrile. Synth. Commun. 1995, 25, 3357–3362.