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Abstract: Palladium-catalyzed carbonyl allylation of stable alke-
nylboronic ester with SnCl2 proceeded diastereoselectively to af-
ford a-substituted allylboronic esters; the assignment of their
configuration as well as allyl additions are presented.
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Additions of allylboronic esters to carbonyl compounds
giving homoallyl alcohols is one of the most versatile
transformations in organic synthesis.1 Allylboronic esters
are nontoxic and easy to handle reagents that add to alde-
hydes passing through a predictable six-membered transi-
tion state, regularly inducing high selectivity. Particularly,
reagents with a stereogenic center a to the boronic moiety
often afford exceptionally high selectivity. The synthesis
of a-substituted allylboronates and their addition to alde-
hydes was pioneered by Hoffmann (Scheme 1).2 Different
methods have been reported for their synthesis.3 It was es-
tablished in our group that [3,3]-sigmatropic rearrange-
ment of the highly stable tartrate derivate 1a4 gives
allylboronic esters 2a with a stereogenic center a to boron.
Their addition to aldehydes gave homoallylic alcohols
with very high diastereo- and enantioselectivity forming
almost exclusively Z-isomers 3, with only minor amounts
of the E-isomer 4 detectable.3a–3d,5

The stereochemical course of the reaction depends on the
substituent in the a-position and the steric bulk of the bo-
ronic ester. The selectivity can be explained in terms of
steric and dipolar effects on the two competing transition
structures 5 and 6.2 In order to extend the approach, we
were interested in developing new a-substituted allylbo-
ronic esters 2 via the palladium-catalyzed carbonyl allyla-
tion reaction. This transformation has been extensively
investigated in the past few years.6 Particularly, the sys-
tem Pd0/SnCl2 proved to be very powerful, wherein SnCl2

is used as reducing reagent and various Pd2+ complexes as
catalyst.7 Herein, we report for the first time that interme-
diates 1b are indeed suitable precursors for the envisaged
reaction.

In analogy to a protocol reported by Takahara et al.,7f bo-
ronic ester 1b was treated with PdCl2(PhCN)2, SnCl2, and
DMF as solvent with different aldehydes, with anti-allyl-
boronic esters 7a–f being predominantly produced with
good yields and selectivity. While the minor diastereoiso-

mers 8a–f (anti) and 9a–f (syn) were detectable in most
cases, the phenyl-substituted reagent 7b was formed ex-
clusively. By increasing the amount of catalyst (from 2–5
mol%) and water (25 equiv), the reaction was accelerated
and conversion was complete after 2 hours instead of 20
hours, without any changes in the selectivity (Table 1).8

Water supports the hydrolysis of the Sn(IV)–Cl bond ac-
tivating the allyltin intermediate.9

In each case, the diastereoselectivity of the reaction was
estimated by examination of the 1H NMR spectrum of the
crude product. The configuration of the products was as-
signed by means of chemical correlations. Oxidation of 7a
and 8a (R1 = c-C6H11) gave the known10 diols 10 and ent-
10 (Scheme 2). The relative stereochemistry of the allyl
boronic esters 7 and 8 was also confirmed to be anti from
the J values for the CH(OH)CH(B) protons (3–6 Hz) in 1H
NMR spectrum. In contrast, the corresponding syn-
isomers 9 showed larger coupling constants (9–11 Hz) for
the CH(OH)CH(B) unit.

Scheme 1 Transition structures for the allyl addition of a-substitu-
ted allylboronates 2 to aldehydes
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Scheme 2 Assignment of the configuration of boronic esters 7a and
8a by chemical correlation
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A plausible mechanism of the palladium-catalyzed allyla-
tion reaction is shown in Scheme 3. The principle of the
process relies on the transient formation of a h3-allyl pal-
ladium complex 11, which might be transformed into al-
lyltin intermediates 12 that would cause nucleophilic
attack to aldehydes furnishing homoallylic alcohols 7.
The carbonyl allylation reaction seems to proceed via a
six-membered transition state 13, with the carbonyl oxy-
gen coordinating to the Sn(IV) species leading to the anti
products 7.

The addition of 7 and 8 to different aldehydes produced 3-
alkene-1,5-diols with good yields (83–92%) and selectiv-
ity (dr up to 85:15, ee >99% for all diastereoisomers; Ta-
ble 2 and Table 3). The (R,S)-7a diastereomer gave
surprisingly selectively the E-isomers 14a–c, while dia-
stereomer (S,R)-8a produced the Z-isomers ent-15a–c.
The configuration of all diols 14 and 15 was determined
by comparison of the spectroscopic data observed with
those previously reported3k,l and by the Mosher ester
method.11 The configuration of the diols also indirectly
confirmed the assignment of the allylboronic esters 7 and
8. The observed results are a consequence of the matched/

mismatched interaction between the auxiliary (in B*) and
the configurations in the anti diastereomers thus leading
to preferred complementary facial attack to the aldehydes
with the a-substituent being in a pseudo-equatorial (7a) or
pseudo-axial (8a) position.

In summary, the present study demonstrates that boronic
esters 1b can be applied in the palladium-catalyzed carbo-
nyl allylation of aldehydes producing a-substituted anti-
allylboronic esters 7 and 8; reagents 7a and 8a were dem-
onstrated to add to various aldehydes furnishing enediols
14 and 15. Further investigations are in progress demon-
strating the scope of the sequence and also evaluating the
precise nature for the change in facial selectivity during
the allyl additions.
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Table 1 Allylations with Boronic Ester 1b

Entry R1 Yield (%)a Ratio of 7/8/9b

a c-C6H11 79 78:18:4

b Ph 79 100:0:0

c Ph(CH2)2 80 75:18:7

d PhCHCH 75 89:11:0

e Me2CH 70 78:22:0

f Me2CHCH2 71 77:14:9

a Isolated mixture of diastereomers.
b As determined by 1H NMR spectroscopy.
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Scheme 3 Proposed mechanism of the palladium-catalyzed allyla-
tion
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Table 2 Addition of New Reagent 7a to Various Aldehydes

Entry R2 Yield (%)a Ratio (E/Z)b ee (%)c

a c-C6H11 87 84:16 >99

b Ph 91 50:50 >99

c Ph(CH2)2 92 74:26 >99

a Isolated mixture of diastereomers.
b The ratio was determined by 1H NMR spectroscopy.
c Determined by the Mosher ester method.

Table 3 Addition of New Reagent 8a to Various Aldehydes

Entry R2 Yield (%)a Ratio (E/Z)b ee (%)c

a c-C6H11 89 16:84 >99

b Ph 83 33:67 >99

c Ph(CH2)2 85 24:76 >99

a Isolated mixture of diastereomers.
b The ratio was determined by 1H NMR spectroscopy.
c Determined by the Mosher ester method.
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