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Abstract: A twelve-step synthesis of (R)-(–)-sumanirole hydro-
chloride, starting from quinoline, has been achieved. The key reac-
tion features selective epoxidation of the C3–C4 double bond of a
1,2-dihydroquinoline bearing a chiral auxiliary at N-1.
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Parkinson’s disease is a progressive neurodegenerative
disease characterized by deterioration of motor control.
The symptoms are caused by loss of cells in the brain that
secrete the neurotransmitter dopamine formed by decar-
boxylation of L-DOPA under the action of L-DOPA de-
carboxylase. Current treatment consists of administration
of L-DOPA which is converted to dopamine in situ. How-
ever, loss of L-DOPA effectiveness and apparition of side
effects are very common after a period of time. In order to
minimize these adverse effects, selective stimulation of
D2 receptors, which are believed to be responsible for the
restoration of motor function, is highly desirable. In con-
trast to currently available drugs [e.g., pergolide (1), cab-
ergoline (2)], which are not selective and show affinity for
other receptor subtypes, sumanirole (3, Figure 1) has been
shown to display high in vitro and in vivo selectivity for
the D2 receptor subtype.1

Owing to these remarkable properties, sumanirole was in-
vestigated as a potential candidate for the treatment of
Parkinson disease but the phase III clinical development
was ceased in 2004 because the molecule failed to provide
sufficient distinction from currently available therapies.
Nevertheless, we became interested in the synthesis of
sumanirole2 because it represented for us a good model to
evaluate the feasibility of new methods aimed at preparing
variously substituted chiral N-substituted 1,2,3,4-tetrahy-
droquinolines in view of further applications in the field
of natural products.

Our retrosynthetic approach to sumanirole, as illustrated
in Scheme 1, relies on initial disconnection of 3 across the
NHCO bond of the imidazolone ring to give N-protected
1,2,3,4-tetrahydroquinoline 4. Compound 4 should be ac-

cessible, via regioselective nitration and stereoselective
hydroxyl group substitution, from alcohol 5, which in turn
should be derived from 6 by regioselective opening of its
epoxide functionality. Finally, the synthesis of 6 could be
envisaged through an asymmetric epoxidation reaction of
chiral 1,2-dihydroquinoline 7, whose preparation should
be readily achieved from quinoline.

Figure 1

Scheme 1 Retrosynthetic analysis of sumanirole

Our synthetic sequence began with attachment of the (S)-
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Stotter3 who reported the 1,2-reduction of quinoline and
trapping of the aminoalane intermediate 8 by use of a
large excess of methyl chloroformate. By analogy, cap-
ture of 8 with the chiral carbamoyl chloride 94 should lead
to the formation of 7 (Scheme 2). However, and for obvi-
ous reasons, we searched for conditions avoiding the use
of elaborated 9 in excess. The best results were obtained
through addition of two equivalents of intermediate 8 onto
one equivalent of 9 at 0 °C and subsequent stirring for five
hours at 20 °C. Following these conditions, chiral N-acyl-
1,2-dihydroquinoline 7 was isolated in 61% yield.5 It
should also be noted that these conditions suppress the
formation of isomeric 2,3-dihydroquinoline 10, a byprod-
uct frequently formed in such a reduction–acylation se-
quence.3

Having prepared chiral 1,2-dihydroquinoline 7 we were
now in a position to examine the crucial epoxidation step.
Although the chiral moiety of the molecule was apparent-
ly far remote from the electrophilic double bond, we were
pleased to observe that reaction of 7 with MCPBA was
significantly diastereoselective, leading to a mixture of
epoxides 11 and 12 in a 4:1 to 9:1 ratio. A pure sample of
the major epoxide could be obtained after chromatograph-
ic separation of the crude mixture and subsequent recrys-
tallization.6 Its relative and absolute stereochemistry was
demonstrated to be that shown in structure 11 by a single-
crystal    X-ray analysis7 (Scheme 3 and Figure 2). As 11is
not very stable to silica gel, we found it to be experimen-
tally preferable to hydrogenate the crude mixture of ep-
oxides and effect the separation of the resulting alcohols.
Following this protocol,8 the required alcohol 13 was iso-
lated in 54% yield from 7 (Scheme 3).

Having 13 successfully in hand as a single isomer, we
judged preferable to postpone the OH → NHMe transfor-
mation to a later stage and to concentrate first on elabora-
tion of the annelated imidazolone ring. In this direction,
installation of a NH2 group at C8 was envisaged via reduc-
tion of a nitro-group precursor. Because C6 was the ex-
pected most electrophilic center, this latter had to be
protected first with a removable group. We thus examined
a bromination–nitration sequence9 as a means of introduc-
ing a nitro group cleanly at C8. With the preliminary work
having shown the incompatibility of the oxazolidin-2-one
moiety with this sequence of reaction, this motif was re-

moved by action of MeOH in the presence of samarium
triflate10 to give the N-carbamate-protected 1,2,3,4-tet-
rahydroquinoline 14. Bromination of 14 proceeded to give
its expected 6-bromo derivative 15. Subsequent regiose-
lective nitration of 15 was effected by action of NaNO3 in
TFA to give compound 16 in good yield (Scheme 4).

At this stage we returned to the installation of the amino
substituent at C3. Treatment of 16 with mesyl chloride af-
forded the corresponding mesylate 17 whose reaction
with sodium azide led to azido compound 18 with yields
ranging from 40–65%.11,12 Subsequent hydrogenation of

Scheme 2 Reagents and conditions: DIBAL-H, (1 equiv), CH2Cl2, 1 h, r.t.; then red solution of 8 added to a solution of 9 (0.5 equiv) in CH2Cl2

at 0 °C; then stirring for 5 h at r.t.
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18 in the presence of Pearlman’catalyst effected three
chemical transformations, that is, hydrogenolysis of the
C–Br bond as well as reduction of the nitro and azido
groups, to afford compound 19 in almost quantitative
yield (Scheme 5). Final transformation of 19 into
sumanirole was achieved in three additional steps. Clo-
sure of the imidazolone ring, to give the tricyclic com-
pound 20 (nor-Me sumanirole), was realized in excellent
yield under the action of KOt-Bu in THF. Finally,
monomethylation of the amino group at C3 was accom-
plished via formation of a formamide intermediate13 21
whose reduction led to (–)-sumanirole hydrochloride
(3·HCl).14

In conclusion, we have achieved a twelve-step synthesis
of (R)-(–)-sumanirole hydrochloride 3·HCl from quino-
line. Our work also demonstrates that attachment of a
chiral 4-benzyloxazolidin-2-one-3-carbonyl moiety at N-
1 of 1,2-dihydroquinoline may control the selectivity of
the C3–C4 double bond epoxidation. Further manipula-
tions of the epoxide functionality should thus allow the
preparation of chiral diversely N-substituted 1,2,3,4-tet-
rahydroquinolines. Work is in progress to find a coherent
explanation of the efficiency of the chiral auxiliary in ori-
enting the sense of epoxidation. We are also currently ap-
plying the results of this study in the field of natural
product synthesis.
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