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Abstract: Several conjugated enynes, which were not accessible if
using the Ohira–Bestmann reagent, were synthesized from the cor-
responding enals using a newly developed reagent that has a longer
shelf lifetime and can be activated under mild conditions.
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Dimethyldiazomethylphosphonate (1, Figure 1) is a mild
and useful reagent for the conversion of aldehydes into
corresponding alkynes.1 However, it is not very stable and
thus has to be prepared prior to use.1f To overcome this
shortcomings, Ohira2a and Bestmann2b introduced a mod-
ified reagent 2, which can be readily prepared and is much
easier to handle. On treatment with K2CO3 in MeOH, 2
undergoes facile reaction with the in situ formed methox-
ide anion to generate MeOAc and the anion of 1. The lat-
ter then reacts further with the aldehyde present in the
reaction mixture, yielding corresponding terminal alkyne.

While the Ohira–Bestmann reagent 2 is much more con-
venient to use than 1 and indeed works very well in many
cases, it is not applicable to substrates sensitive to MeOH/
methoxide (e.g., conjugated enals).2b,c In another project,
we needed to gain access to certain conjugated enynes
from the corresponding enals. Repeated failure with 2
prompted us to design a new reagent 3 (Figure 1), which
carries a hydroxyl group at the terminal of a three-carbon
chain and allows for generation of the desired diazo-
methane anion by cleavage of the acyl functionality via
lactonization instead of the intermolecular attack by a
methoxide ion as required for 2. Those side reactions
caused by methoxide hence can be avoided altogether.

One of the feasible routes to the new reagent 3 is shown in
Scheme 1. Deprotonation of the known 43 with n-BuLi
followed by treatment with g-butyrolactone introduced
the desired acyl chain. The hydroxyl group was then
masked4 as a Et3Si (TES) ether to suppress the possible in-
tramolecular attack of the hydroxyl group on the acyl
group leading to formation of g-butyrolactone (the same
process as desired in later reaction with aldehydes to yield
alkynes) during introduction of the diazo group. The TES
protecting group was then cleaved with AcOH–H2O in
THF at 0 °C to give the new reagent 3, a compound that
can be stored at room temperature for months without any
discernible decomposition.5,6

Scheme 1 Reagents and conditions: a) (i) n-BuLi, THF, g-butyro-
lactone, –78 °C; (ii) LDA; (iii) TESCl, 87% from 4; (iv) TsN3,
K2CO3, 68%; b) AcOH, H2O, THF, 0 °C, 70% from 5.

Conversion of aldehydes into alkynes with 3 was then
tested on conjugated enals (Scheme 2), the most difficult
subtype to which the Ohira–Bestmann reagent 2 is entire-
ly inapplicable. As cleavage of the acyl group in 3 to re-
lease the diazomethane anion 3a does not rely on the
intermolecular attack of methoxide ion and the relative
high temperature required in experiments with 2 is no
longer necessary, the reactions were performed at –78 °C
to minimize potential complications.

Scheme 2 Reagents and conditions: a) NaHMDS, THF, 18-crown-
5, –78 °C.

Figure 1 The structures of 1, 2, 3, and the anions generated
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Preliminary results with 3 are outlined in Table 1. Com-
pared with the broadly employed 2, which is entirely in-
applicable to these enals, the newly developed reagent 3
showed unambiguous advantages. In most cases the de-
sired conjugated enynes were formed in moderate to good
yields. Except 6a, which reacted well without any added
crown ether, all other substrates required addition of sub-
stantial amounts of 15-crown-5 ether to facilitate the reac-
tion.7,8

It was noted that in most runs where significant amounts
of starting aldehydes were recovered at the end of the
reaction, some unidentified intermediates (most likely,
the adducts before elimination of the phosphate and N2)
were also obtained in substantial quantities.

In conclusion, a new reagent for conversion of aldehydes
into alkynes was developed, which contains a self-activa-
tion mechanism and thus may generate reactive diazo-
methane anion at low temperature on treatment with
NaHMDS in the presence of 15-crown-5. Compared with
the classic reagent 1, the newly developed 3 is remarkably
more stable, without any difficulty to store at ambient
temperature for months. Fresh preparation of the reagent
every time in need as with 1 is thus avoided. On the other
hand, because activation of this reagent (i.e., the cleavage
of the acyl group to generate the diazomethane anion)
does not rely on intermolecular attack of methoxide ion as
with the Ohira–Bestmann reagent 2, all the side reactions
stemming from the presence of MeOH/methoxide are
hence eliminated. As a consequence, the additional limi-
tations on the types of substrates associated with 2, which
appear to be the price one has to pay for its facile prepara-
tion, storage, and use compared with 1, are circumvented.
Conjugated enynes as those shown in Table 1, which are
not attainable with 2, can now be smoothly obtained from
the corresponding enals.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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Table 1 Results of Reaction of 3 with 6 Leading to 7a

Entry Substrate Product Yield (%)
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a Confer the general procedure given in ref. 8.
b No 15-crown-5 was used in this run.
c Along with 20% of recovered 6b.
d Along with 25% of recovered 6c.
e Along with 28% of recovered 6d.
f Along with 15% of recovered 6e.
g Along with 50% of recovered 6f.
h Along with 17% of recovered 6g.

Table 1 Results of Reaction of 3 with 6 Leading to 7a (continued)

Entry Substrate Product Yield (%)
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