

Tetrahedron Letters 44 (2003) 4265-4266

TETRAHEDRON LETTERS

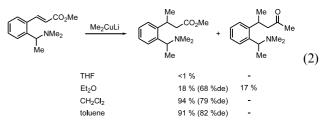
'Me₂CuLi·TMSCl in CH₂Cl₂'. The most powerful methylating agent for sterically congested α , β -enoates

Naoki Asao, Sunyoung Lee and Yoshinori Yamamoto*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan Received 30 October 2002; revised 4 April 2003; accepted 4 April 2003

Abstract—The reaction of Me₂CuLi with sterically congested α , β -unsaturated esters in the presence of TMSCl in CH₂Cl₂ proceeded very smoothly to produce the conjugate addition products in high yields. © 2003 Elsevier Science Ltd. All rights reserved.

Conjugate addition using organocopper reagents to α,β -unsaturated esters is one of the most practical and important methods for C-C bond formation in organic synthesis.¹ In 1978, we found that when RCu was treated with Lewis acids, such as $BF_3 \cdot OEt_2$, at lower temperatures, the combined reagent exhibited an enhanced reactivity toward enoates in comparison with RCu itself or even with R₂CuLi.² For example, the conjugate addition of BuCu BF₃ to ethyl tiglate gave the conjugate adduct in 96% yield, although the addition with Bu₂CuLi afforded the desired product only in 16% yield.^{2b} In contrast, the reactivity of MeCu·BF₃ was relatively lower than alkylcoppers BF₃, such as BuCu BF₃, and in certain cases the conjugate addition to sterically hindered enoates did not give a satisfactory result. Later on, it was reported that the addition of TMSX (X = Cl or I) to MeCu or Me₂CuLi dramatically improved the yield of the conjugate adducts in additions to α,β -unsaturated esters.^{3–5}


Nilsson and co-workers reported that the addition of MeCu TMSI to enoates in CH_2Cl_2 gave the conjugate adducts in much higher yields than that in diethyl ether (for example, Eq. (1)).⁵

Ph CO ₂ Me	Ph Me CO ₂ N	/le ⁺	Ph CO ₂ Me	
MeCu·TMSI/CH ₂ C	Sl₂ 92 %		-	(1)
MeCu·TMSI/Et ₂ O	/Et ₂ O 39 % 56 %			
Me(Th)CuLi TMS	CI/Et ₂ O 75 %		-	

* Corresponding author. Tel.: +81-22-217-6581; fax: +81-22-217-6784; e-mail: yoshi@yamamotol.chem.tohoku.ac.jp

0040-4039/03/\$ - see front matter 0 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0040-4039(03)00891-8

They also reported that the reagent system, MeCu·TMSI in CH_2Cl_2 , was more efficient than Me(Th)CuLi·TMSCl in diethyl ether.⁶ Ullenius and co-workers reported that the diastereoselectivities in the conjugate addition of Me₂CuLi to the enoate shown in Eq. (2) were higher in the non-coordinating solvents, such as CH_2Cl_2 and toluene, than in Et₂O, and even higher chemical yields of the conjugate adducts were obtained in the non-coordinating solvents (Eq. (2)).⁴

Based on the above results, it occurred to us that MeCu or Me_2CuLi in the presence of TMSX in a non-coordinating solvent would become an efficient methylating agent for conjugate addition to sterically congested enoates. This idea was tested in conjugate additions to **1a** (Eq. (3)).

Me L	· ·	Me Me CO ₂ CH ₂ Ph	
Me ²	-	Me ^r V ² ²	
	1a	2a	
	Me₂CuLi·TMSCI/Et₂O	0 % ^a	
	Me(Th)CuLi∙TMSCI/Et ₂ O	0 % ^a	(3)
	Me₂CuLi⋅TMSCI/toluene	0 % ^a	
	Me ₂ CuLi only/CH ₂ Cl ₂	0 % ^a	
	MeCu·TMSCI/CH ₂ Cl ₂	75 %	
	Me ₂ CuLi·TMSCI/CH ₂ Cl ₂	96 %	
	^a The starting material was recovered		

The starting material was recovered.

Entry	Substrate 1				Time (h)	2	Yield (%) ^b	
	$\overline{\mathbb{R}^1}$	R ²	R ³	R				
1	Me	<i>n</i> -C ₆ H ₁₃	Н	Et	1b	6	2b	100
2	Me	iPr	Н	Et	1c	6	2c	94
3	(Cl	$H_2)_5$	Н	Et	1d	2.5	2d	99
4	Me	Ph	Н	Et	1e	3	2e	98
5	Н	Me	Me	PhCH ₂	1f	3.5	2f	63
6 ^c	Н	Me	Me	PhCH ₂	1f	13	2f	87
7°	Me	<i>n</i> -C ₆ H ₁₃	Me	Et	1g	2	2g	97

Table 1. Conjugate addition reaction of 'Me₂CuLi TMSCl/CH₂Cl₂' to 1^a

^a The reaction was carried out using 1 (1 equiv.), Me₂CuLi (2 equiv.), and TMSCl (2 equiv.) in CH₂Cl₂ at -78 to 0°C unless otherwise noted. ^b Isolated yield.

^c Reaction was carried out using Me₂CuLi (3 equiv.) and TMSCl (3 equiv.).

As shown in Eq. (3), 'Me₂CuLi·TMSCl/CH₂Cl₂' is the most efficient methylating agent. The use of ether or toluene as a solvent gave no conjugate adduct at all. The absence of TMSCl did not afford the desired product at all even if CH_2Cl_2 was used as a solvent. 'Me₂CuLi·TMSCl/CH₂Cl₂' was better than 'MeCu·TMSCl/CH₂Cl₂'.

The preparation of 2a is representative. To a suspension of CuI (380 mg, 2 mmol) in ether (2 mL) was added MeLi (4 mmol, 1.04 M in ether) at 0°C and the mixture was stirred for 10 min. The solvent was removed under reduced pressure at 0°C and then CH₂Cl₂ (2 mL) was added. The mixture was stirred for 5 min at 0°C, and then the solvent was removed again in vacuo at 0°C. To the residue was added pre-cooled CH_2Cl_2 (15 mL) and the mixture was cooled to $-78^{\circ}C$. To the mixture were added TMSCl (0.25 mL, 2 mmol) and a solution of 1a (190 mg, 1 mmol) in CH₂Cl₂ (2 mL), successively. The mixture was allowed to warm to 0°C gradually and the reaction was quenched by addition of a mixture of aqueous saturated NH₄Cl and 28% NH_4OH (1:1). The mixture was extracted with ether three times and the combined extracts were dried (Na₂SO₄) and evaporated to leave the crude product, which was purified by a silica gel column, and the product was isolated using hexane/EtOAc = 3/1 as eluent; 2a was obtained as a pale yellow oil (197 mg, 0.96 mmol) in 96% yield.

We next examined the conjugate addition of other sterically congested α,β -unsaturated esters **1b–g** using 'Me₂CuLi·TMSCl/CH₂Cl₂' (Eq. (4)) and the results are summarized in Table 1. In the reactions of the β,β -disubstituted substrates **1b–e**, the corresponding conjugate adducts were obtained in more than 90% yields (entries 1–4). While the reaction of the α,β -disubstituted substrate **1f** afforded **2f** in a moderate yield (entry 5), the chemical yield was increased to 87% when the equivalents of both Me₂CuLi and TMSCl were increased from two to three (entry 6). Finally, we examined the reaction of the α,β,β -trisubstituted substrate **1g**. To our surprise, the reaction proceeded smoothly and the conjugate addition product 2g was obtained in 97% yield (entry 7).

$$R^{2} \xrightarrow[R^{3}]{CO_{2}R} + Me_{2}CuLi \xrightarrow{TMSCI}_{CH_{2}CI_{2}} R^{1} \xrightarrow[R^{2}]{CO_{2}R}_{R^{3}} (4)$$

We are now in a position to carry out effectively the conjugate addition of a methyl group to sterically congested enoates using the 'Me₂CuLi·TMSCl/CH₂Cl₂' reagent system. We also investigated whether or not Bu₂CuLi·TMSCl/CH₂Cl₂ and Ph₂CuLi·TMSCl/CH₂Cl₂ can be used as powerful agents for the conjugate addition, however, we found that these reagent systems are not useful.

References

- For reviews, see: (a) Yamamoto, Y. Angew. Chem., Int. Ed. Engl. 1986, 25, 947–959; (b) Organocopper Reagents: A Practical Approach; Taylor, R. J. K., Ed.; Oxford University Press: Oxford, 1994; (c) Lipshutz, B. H.; Sengupta, S. Org. React. (New York) 1992, 41, 135–631; (d) Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim, 2002.
- (a) Yamamoto, Y.; Maruyama, K. J. Am. Chem. Soc. 1978, 100, 3240–3241; (b) Yamamoto, Y.; Yamamoto, S.; Yatagai, H.; Ishihara, Y.; Maruyama, K. J. Org. Chem. 1982, 47, 119–126.
- (a) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26, 6015–6018; (b) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26, 6019–6022; (c) Alexakis, A.; Berlan, J.; Besace, Y. Tetrahedron Lett. 1986, 27, 1047–1050.
- (a) Christenson, B.; Hallnemo, G.; Ullenius, C. *Tetrahedron* 1991, 47, 4739–4752; (b) Christenson, B.; Ullenius, C.; Hakansson, M.; Jagner, S. *Tetrahedron* 1992, 48, 3623–3632.
- Bergdahl, M.; Lindstedt, E.-L.; Nilsson, M.; Olsson, T. *Tetrahedron* 1988, 44, 2055–2062.
- Lindstedt, E.-L.; Nilsson, M.; Olsson, T. J. Organomet. Chem. 1987, 334, 255–261.