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Abstract:  

Enantioselective organocatalytic α-sulfamidation of unbranched aldehydes is described using 

MacMillan’s second-generation imidazolidinone catalyst and o-nitrobenzenesulfonyl azide.  The 

reactions are highly stereoselective (89.9-96.3% ee) with yields up to 71%.  A strong correlation between 

aldehyde structure and product yield was found to exist, with 3-arylpropanals providing the best results.  

Application to functionalized amino acid synthesis is presented.   
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Chiral carbons having bonds to nitrogen are widespread in natural products and medicinal compounds.  

Among the most highly developed approaches to C−N bond formation is the use of chiral imide and 

sultam enolates in reactions with electrophilic sources of nitrogen, including azodicarboxylates,
1-3

 nitroso 

compounds,
4
 and sulfonyl azides.

5
  These transformations have been optimized, and their utility 

broadened, for decades.
6-8

  In recent years, analogous protocols involving organocatalytic C−N bond 

formation have been reported.
9-11

  These methods employ aldehydes, permitting direct transformation of 

the enantioenriched nitrogen-containing products to target compounds, including amino acids and amino 

alcohols, with minimal adjustments of oxidation state and without the need to remove chiral auxiliaries.     

List and Jørgensen made their seminal contributions to organocatalytic amination using 

azodicarboxylates as electrophilic sources of nitrogen (Scheme 1).
12-13

  Maruoka and others subsequently 

extended this concept to nitrosobenzene and nitrosocarbonyl reagents,
14-19

 and now a range of 

compounds can be made using these enantioselective protocols.  Unmasking the free amine in the 

transformed reaction products, however, is not trivial and usually requires multiple steps and reductive 

conditions to cleave the N−N or N−O bond.  A more recent development from the MacMillan laboratory 

takes a notably different approach, using photoredox organocatalysis in radical-mediated aminations 

(Scheme 1).
20

  Removal of the carbamate protecting groups found on the N-alkyl carbamate products 

may be accomplished under a variety of mild conditions to reveal the secondary N-alkyl amines.  The 

continued development of organocatalytic methods providing α-amino carbonyl compounds in which the 

nitrogen protecting group(s) may be removed in a single step under mild, non-reductive conditions is 
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essential to extend the range of functional groups compatible with organocatalytic amination and shorten 

synthetic routes.     
 

Scheme 1. Organocatalytic α-amination of aldehydes 

 

 
 

In 2006, Bräse and co-workers reported that proline and derivatives catalyze the reaction of α,α-

disubstituted aldehydes with sulfonyl azides to produce α-sulfonamido aldehydes (Scheme 1).
21

  The 

optimized organocatalytic protocol used stoichiometric proline, and delivered reaction products in up to 

55% yields and up to 84% ee.  Proline failed to catalyze the reaction with linear, unbranched aldehydes, 

and MacMillan imidazolidinones did not catalyze the reaction at all.  Despite the considerable promise of 

this transformation, to the best of our knowledge no additional studies have appeared since the 2006 

publication.  Consequently, the described limitations have continued to restrict application of the reaction 

and prevent its use with classes of aldehydes leading to proteinogenic amino acids and related structures 

(i.e., secondary amines), that are not fully substituted at the chiral carbon.  We report here a study of the 

enantioselective α-amination of linear, unbranched aldehydes using MacMillan’s second-generation 

imidazolidinone catalyst (4, Scheme 1) and sulfonyl azides, providing access to these valuable secondary 

amino compounds.  When o-nitrobenzenesulfonyl azide is used in the reaction, the sulfonamide 

protecting group may be removed from subsequent amine products using Fukuyama’s mild protocol.
22

 

Our investigation began by exploring the reaction of 3-phenylpropanal with p-toluenesulfonyl 

azide (p-TsN3), catalyzed by imidazolidinone catalyst 4, in a variety of organic solvents (Table 1) over 

24 hours.  The amination was successful, producing yields up to 21% in both CH2Cl2 and toluene; 

however, the highest yields were obtained when the reaction was run neat (46%) or in the presence of 

water (53%).  The small improvement in conversion observed when the reaction was run in the presence 

of water, compared to neat, suggests there is little or no contribution from “on-water” acceleration.
23

  The 

sticky reaction mixture continued to stir in the presence of water, forming a fluid coating around the stir 
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bar, while under neat conditions the stir bar became stuck, preventing efficient mixing of the reaction 

components.  
 

Table 1. Conditions screen
a
 

 

           
Entry Solvent Catalyst Time 

(h) 
Yield 
(%)

b
 

1 CH2Cl2 4 24 21 

2 THF 4 24 6 
3 Acetone 4 24 17 

4 Toluene 4 24 21 
5 MeOH 4 24 7 

6 Neat  4 24 46 
7 H2O 4 24 53 

8 H2O 4 16 49 
9 H2O 4 5 46 

10 H2O (HClO4)
c
 4 24 58 (60)

d
 

11 H2O 5 24 11 

12 H2O 6 24 0 
13 H2O 7 24 0 

14 H2O 1 24 0 
15 H2O 8 24 7 

aReactions performed using 0.38 mmol  of aldehyde and 2 mL of solvent.  
bDetermined by NMR using 1,3,5-trioxane as internal standard. cHClO4  

(1.1 equiv) added. dIsolated yield in parentheses (two runs), with 90.5% ee.  

 
 

        

 

Having identified water as the optimal reaction medium, we screened other commercially-

available MacMillan imidazolidinone catalysts (5-7), as well as proline (1) and a representative TMS-

protected diphenylprolinol derivative (8).  Surprisingly, the relatively small changes in structure 

encountered going from catalyst 4 to catalysts 5-8 resulted in either a complete loss or steep decline in 

the desired reactivity.  We also examined the possibility of improving yield through control of reaction 

time, stoichiometry, and use of additives.
24

  Varying the stir time from 5-16 hours, the reaction was 

observed to be mostly complete after 5 hours (entry 9).  Inclusion of HClO4 was also found to improve 

product yield (Entry 10).
25

  Follow-up reactions indicated that isolated yields of tosyl-protected amino 

alcohol 9 averaged 60%, with 90.5% ee.   

A brief survey of sulfonyl azides identified o-nitrobenzenesulfonyl azide (NsN3) as providing the 

optimal combination of yield and enantiomeric excess with 3-phenylpropanal.
24

  Thus, attention was 

turned to a study of aldehyde substrate scope using NsN3 as nitrogen source (Table 2).  While 3-

phenylpropanal is a liquid at room temperature, permitting the formation of a fluid organic phase, 

semisolid aldehydes performed better when a small amount of ethyl acetate was added to the reaction 

mixture, enabling more efficient mixing of reactants.  Therefore, small quantities of ethyl acetate (3-7% 

of total solvent volume) were used in subsequent amination reactions.  3-Arylpropanals were initially 

pursued, and a striking relationship was found to exist between the nature of the aromatic ring and the 

isolated yield of amination product.  When the aromatic ring was substituted with electron-donating 

groups, including ethers (11-13), esters (14), thioethers (15), alkyl groups (16), and alkynes (17), the 

highest yields (51-68%) of amination products were obtained.  When 3-arylpropanals bearing electron-
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withdrawing groups, including halogens (18-20) and nitro groups (21-22), were used, considerably lower 

yields resulted (30-44%).  Enantioselectivities >90% were generally observed.  Three additional 

modifications were made to the aldehyde, including the insertion of a carbon atom between the carbonyl 

and the aromatic ring (23), replacement of the aromatic ring with an olefin (24), and replacement of the 

aromatic ring with an alkyl chain (25).  In all three cases, a dramatic drop in yield was observed (15-

24%).
26

  However, enantioselectivities remained high (>93% ee).  Notably, cis-4-heptenal gave 

consistently higher yields than heptanal.          

 
Table 2. Aldehyde substrate scope

a,b 

 

HO

Cl

41% y, 94.1% ee

NHNs

HO

F

44% y, 93.4% ee

NHNs

HO

57% y, 94.7% ee

NHNs

HO

71% y, 91.8% eec

NHNs

HO

62% y, 89.9% eec

NHNs

CH3

CH3

OCH3

36% y, 95.3% ee

HO

NHNs
Br

HO

51% y, 92.2% ee

NHNs
SCH3

RH

O

RH

O

NHNs

(25 mol%)
HClO4

NaBH4

MeOH
RHO

NHNs

HO HO

30% y, 95.6% eef 32% y, 96.3% ee

NHNs NHNs
NO2

NO2

HO

51% y, 95.3% eee

NHNs

Si(CH3)3

68% y, 95.6% ee

HO

NHNs
O

O

H2O/EtOAc

HO

NHNs
O

OCH3

CH3

O

57% y, 92.4% eed

10 11 13 14

15 16 17 18 19

20 21 22

0-23 oC

(R,R)-4

HO

15% y, 94.8% ee

NHNs

24% y, 93.5% eeg

HO

NHNs

HO

19% y, 95.8% ee

NHNs

23 24 25

HO

58% y, 94.3% eec

NHNs

OCH3

12

N3
S

O O
NO2

       
  aReactions performed using 0.38 mmol of aldehyde, 0.41 mmol of azide (NsN3), and 0.38 mmol of HClO4 in H2O (2 mL)/EtOAc (0.06-0.15 mL). bData are an average of two  

   or more runs. cEtOAc excluded. dYield of aldehyde. eOn 1.0 mmol scale, 39% y, 95.1% ee. fOn 1.0 mmol scale, 25% y, 94.0% ee. gcis/trans ratio = 9:1. 

 
Scheme 2 depicts the catalytic cycle proposed by Bräse for proline,

21
 used to rationalize the 

stereoinduction observed with MacMillan’s second generation catalyst, (R,R)-4.  Condensation with the 

aldehyde produces enamine 26, in which the double bond has the E configuration and is rotated away 

from the bulky tert-butyl group.  The Si face of the enamine is shielded from reaction with the sulfonyl 

azide by catalyst substituents, directing regioselective [3+2] cycloaddition
27

 to the unobstructed Re face.  

This rationale has been used to explain enantioinduction in a variety of transformations using catalyst 

4.
28-33

  Decomposition of triazoline 27 with loss of nitrogen (N2) delivers aziridine intermediate 28.  

Opening of the aziridine and migration of the sulfonamide produces iminium ion 29, affording the 

substituted aldehyde (30) upon hydrolysis.
34-35

  The major enantiomer obtained in the reaction (R-

configuration, confirmed for 10 and 25) indicates a retention of configuration in going from 27 to 30.   
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Scheme 2. Proposed catalytic cycle 

  

   
 

The products of these reactions, α-sulfonamido alcohols and aldehydes, are precursors to 

functionalized α-amino acids.  To demonstrate their utility, oxidation of sulfonamide-protected amino 

alcohol 21, substituted with an aromatic nitro group, was followed by removal of the o-nosyl protecting 

group using Fukuyama’s method (Scheme 3).
22

  The susceptibility of aromatic nitro groups to reduction
36

 

would render the synthesis of amino acid 32, under conditions requiring N−N or N−O bond cleavage, 

challenging. 

 

Scheme 3. Functionalized amino acid synthesis 
 

 
 

In conclusion, conditions for the organocatalytic α-amination of unbranched aldehydes using 

MacMillan’s second generation imidazolidinone catalyst and sulfonyl azides have been developed, and a 

study of the aldehyde substrate scope has been conducted.  The transformation proceeds with high 

enantioselectivites in all cases examined, but the best yields are obtained using 3-arylpropanals bearing 

electron-rich aromatic rings.  Further work to understand the reaction mechanism and optimize catalyst 

structure is ongoing to broaden substrate scope and improve scalability.  The results will be reported in 

due course. 
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• Organocatalytic α-sulfamidation of unbranched aldehydes is described. 

 

• The reactions are highly stereoselective (90-96% ee). 

 

• A significant correlation between aldehyde structure and product yield was found. 

 

• Application to functionalized amino acid synthesis was carried out. 
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