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We have designed novel small inhibitors of rabbit 20S proteasome using a trifluoromethyl-p-hydrazino
acid scaffold. Structural variations influenced their inhibition of the three types of active sites. Protea-
some inhibition at the micromolar level was selective, calpain I and cathepsin B were not inhibited.
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The proteasome is a large, multisubunit, proteolytic complex
that progressively degrades ubiquitinylated proteins to small pep-
tides.! The proteasome is composed of a 20S catalytic core and two
19S regulatory caps which are responsible for the recognition,
unfolding and translocation of protein substrates into the 20S cat-
alytic core cavity. The eukaryotic 20S proteasome is formed by four
stacked rings, and each of the two inner rings is composed of seven
different p subunits.? The 1, 82 and 5 subunits contain the post-
acid (PA), trypsin-like (T-L) and chymotrypsin-like (CT-L) active
sites where peptide bonds are cleaved on the carboxyl side of
acidic, basic and hydrophobic amino acid residues, respectively.®
The ubiquitin-proteasome system is involved in the degradation
of regulatory proteins that are crucial for many intracellular pro-
cesses, including cell progression, apoptosis and NF-kB activation.
Proteasome inhibitors cause selective apoptosis of malignant cells
and are therefore a new class of antineoplastic agents.* Bortezomib
(Velcade®) has been approved for treating incurable multiple mye-
loma and mantle lymphoma.’ Carfilzomib (PR-171),° salinospora-
mide A (NPI-0052)” and CEP-187708 are in phases I and II clinical
trials. Most proteasome inhibitors, such as epoxyketones, peptide
aldehydes, peptide vinyl sulfones and peptide boronic acids, are
covalent binding inhibitors because they bear a reactive group that
forms a covalent bond with the catalytic OY-Thr in the three cata-
lytic sites.~'" Non-covalent inhibitors should have smaller side
effects in therapeutics because they should not have the inherent
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drawbacks often associated with reactive groups, such as a lack
of specificity, excessive reactivity and instability.'> However, they
have been less extensively investigated. They include ritonavir,!3
aminobenzylstatine derivatives,'? lipopeptides,'* macrocyclic'>!®
or linear TMC-95 derivatives.!” This report describes the first rep-
resentatives of a new class of non-covalent 20S inhibitors based on
a central fluorinated pseudopeptide.

Fluorine has become a fundamental tool in the development of
drugs.'®2? Trifluoromethylated compounds are particularly
important, as shown by the number of CFs-containing drugs and
drug-candidates in clinical use or in development. The trifluoro-
methyl group is often used in medicinal chemistry to improve met-
abolic stability and/or biological activity.?®> It is hydrophobic,
electron-rich, bulky and it can mimic functional groups such as
methyl, isopropyl and phenyl. Consequently, incorporating a tri-
fluoromethyl group into peptides and peptidomimetics can greatly
alter their structural properties and thus their ability to interact
with receptors or enzymes. The incorporation of a trifluoromethyl
group into peptidomimetics to produce potent inhibitors of various
enzymes has been extensively studied.?*
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Figure 1. New trifluoromethyl-B-hydrazino acid scaffold.
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As part of ongoing investigations into the design of proteasome
inhibitors and the development of new trifluoromethyl peptidom-
imetics, 2> we have developed new trifluoromethyl inhibitors
based on the trifluoromethyl-B-hydrazino acid scaffold 1 (Fig. 1).

Retro hydrazino-azapeptoids were recently described as cova-
lent proteasome inhibitors with ICsos of 50—500 uM,3! whereas
hydrazinopeptides inhibited the serine protease leukocyte elas-
tase.>2 B-Hydrazino acids are peptidomimetic building blocks that
have two nitrogen atoms. They can be considered to be analogs of
B-amino acids in which the amine group has been replaced by a
hydrazine. But while the B-amino acids are well documented,
33-35 almost nothing is known about these peptidomimetics. Obvi-
ously, these structures can mimic the typical secondary structure
of native a-peptides, making them useful tools with which to de-
sign new protease inhibitors. To our knowledge, the synthesis of
CF3-B-hydrazino acid has not been reported. This scaffold was cho-
sen because it has a trifluoromethyl group, which can greatly im-
prove the acidity of the neighbouring hydrazine functional group
and thus increase its hydrogen bond donor ability.?? The non-cova-
lent interactions of several peptidic and peptidomimetic protea-
some inhibitors are mainly mediated by hydrogen bonds
implicating in particular residues 21, 47 and 49 with the formation
of an antiparallel B-sheet between the inhibitor and the amino acid
residues of the binding pockets.® Occupancy of the S1 and S3 sub-
sites appears to be essential for efficient inhibitor binding.®'? The
elongation of the backbone may introduce flexibility, thus facilitat-
ing the putative interaction of substituents R' and R? with the
enzyme S1 and S3 pockets. Compounds 2-8 (Fig. 2) were designed
and synthesized. They have a phenylalanine amino acid at the
C-terminal end whose phenyl group is assumed to occupy the S1
pocket. The N-terminus of our starting molecule 2 was inspired
by aminobenzylstatine derivatives,'> which interact with the S3
pocket and the phenoxysubstituted benzylic N-terminal group
with the AS1 and AS2 accessory hydrophobic pockets. We intro-
duced several structural variations in the pseudopeptide N-termi-
nus in order to evaluate their influence on specific binding and
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Compounds 2-8 were prepared as outlined in Scheme 1. The
common intermediate 12 was obtained in four steps from ethyl
4,4 4-trifluorocrotonate 9.36 Michael addition of tert-butyl-carbaz-
ate 10 on 9 gave the N-protected trifluoromethyl-p-hydrazino es-
ter 11 which was deprotected and coupled to the L-phenylalanine
methyl ester. The cleavage of the Boc group of the hydrazine moi-
ety gave compound 12. This intermediate 12 was then used to ob-
tain compounds 2-8 using standard solution phase coupling
chemistry. A simple coupling with 3-phenoxyphenylacetic acid
gave compound 3. Coupling 12 with Fmoc-1-3,4-dimethoxyphenyl-
alanine, cleavage of the Fmoc group, and coupling with
3-phenoxyphenylacetic acid gave compound 2. Coupling 12 with
No-Boc-Ne-Z-1-lysine gave compound 6, which was Ne-Z deprotec-
ted to give compound 7, or No-Boc deprotected to give compound
8. Compound 8 was then coupled to 3-phenoxyphenylacetic acid to
give compound 4 which was N-deprotected to provide product 5.
The coupling of N-protected trifluoromethyl-p-hydrazino acid (ob-
tained from 11) to L-phenylalanine methyl ester gave a 1:1 mixture
of diastereoisomers that could not be separated by flash chroma-
tography or by crystallisation. All the compounds progressed then
as 1:1 diastereoisomer mixes (except for compound 2 which was
obtained with a diastereiosomeric ratio of 2/3, probably because
of the loss of one diastereiosomer during purification). The ratio
was evaluated by NMR 'H and '°F.

The capacities of molecules 2-8 (diastereoisomeric mixtures) to
inhibit the three activities of rabbit 20S proteasome were assayed
using appropriate fluorogenic substrates (Fig. 3).!*!1737 The
aldehyde proteasome inhibitor MG132 (Z-LLL-H) was used as
standard.!”

Compound 2 inhibited the CT-L and PA activities of rabbit 20S
proteasome (ICsq = 85 and 72 UM, respectively) (Table 1). Shorten-
ing the pseudopeptide by connecting directly the phenoxy benzyl
moiety on the trifluoromethyl-B-hydrazino acid scaffold and elim-
inating the 3,4-dimethoxyphenylalanine totally removed the
capacity of molecule 3 to inhibit all three active sites (Table 1).
Replacing the 3,4-dimethoxyphenylalanine amino acid by the more
hydrophilic lysine amino acid could facilitate the interaction of the
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Figure 2. Synthesized trifluoromethyl-B-hydrazino compounds 2-8.
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Scheme 1. Synthesis of compounds 2-8. Reagents and conditions: (a) MeOH, 70 °C, 94%; (b) 2 N aqg NaOH, THF/MeOH, rt, 98%; (c) .-phenylalanine methyl ester hydrochloride,
HBTU, HOBt, DIPEA, DCM/DMF, rt, 91%; (d) TFA, DCM, rt, 100%; (e) 3-phenoxyphenylacetic acid, HBTU, HOBt, 2,4,6-collidine, rt, 42%. (f) Fmoc-1-3,4-dimethoxyphenylalanine,
HBTU, HOBt, 2,4,6-collidine, rt, 22%; (g) 10% piperidine/DMF, rt, 84%; (h) 3-phenoxyphenylacetic acid, HBTU, HOBt, 2,4,6-collidine, rt, 41%; (i) No--Boc-Ne-Z-1-lysine, HBTU,
HOBt, DIPEA, DMF, rt, 57%; (j) Ha, 20% Pd/C, MeOH, rt then citric acid monohydrate, rt, 51%; (k) TFA, DCM, rt, 100%; (1) 3-phenoxyphenylacetic acid, HBTU, HOBt, 2,4,6-

collidine, rt, 71%; (m) Hy, 20% Pd/C, MeOH, rt then TFA, rt, 100%.
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Figure 3. Inhibition of CT-L activity of rabbit 20S proteasome by compound 5 at pH

7.5 and 37 °C. The experimental data were fitted to equation% inhibition = 100[5]""/
(ICso™ +[5]"") with nH = 4.5.

Table 1

ICs0 (LM) or % inhibition at 100 uM of rabbit 20S proteasome at pH 7.5 and 37 °C. x,
activation factor. Values are means of three experiments. CT-L, chymotrypsin-like
activity; PA, post-acid activity; T-L, trypsin-like activity; ni, non-inhibitor

Compound CT-L PA T-L

2 8515 72+0.7 x4

3 X2 ni ni

4 ni 200 ni

5 1.6+0.1 2.7+0.1 84+13
6 ni ni X3

7 32+2 6+0.5 30%

8 5.9+05 ni 44+1.2

eNH, group with the aspartic residues in the S3 pocket of the T-L
active site.'®1” It should also increase the solubility of the com-
pound. Indeed, molecule 5 inhibited CT-L (IC50=1.6 uM) and PA
(ICs50=2.7 uM) activities and also T-L activity (ICsq=8.4 pM),
whereas protecting the lysine group eliminated inhibitory power
(CT-L and T-L) or decreased it (PA, factor = 100) (molecule 4). The
phenoxysubstituted benzylic N-terminal group was not essential
for inhibition since molecule 7 was a moderate inhibitor (compare
compound 5). The free N-terminus was favorable (ICso = 5.9 UM,
CT-L) and (ICs0 = 4.4uM, T-L), although the eNH, group was pro-
tected (molecule 8 compared to molecule 7). Again, a positive
charge on the lysine lateral chain or N-terminus stimulated binding
to the T-L active site. But, neither lysosomal cathepsin B nor cyto-

solic calpain I was inhibited by compounds 5, 7 and 8.38 We used
a cell-based chemiluminescent assay>° to show that compound 5
inhibited the CT-L activity in human HeLa cells (20% inhibition at
50 puM after incubation for 1.5 h).

In conclusion, we have identified a series of fluorinated pseudo-
peptides that incorporate a trifluoromethyl-B-hydrazino acid scaf-
fold, as a new class of proteasome inhibitors. These new
fluorinated pseudopeptides are very easy to synthesize. A limited
SAR around the fluorinated scaffold resulted in the discovery of
compounds having differential inhibitory capacities for CT-L, PA
and T-L in micromolar range without effect on challenging proteo-
lytic enzymes such as calpain and cathepsin B. These encouraging
results have led us to further optimize the lead compounds 5, 7 and
8 using molecular modeling and continuing biological evaluation.
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