Tetrahedron Letters 50 (2009) 4874-4877

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Stereoselective synthesis of (22Z)-25-hydroxyvitamin D_2 and (22Z)-1 α , 25-dihydroxyvitamin D₂

Zoila Gándara, Manuel Pérez, Xenxo Pérez-García, Generosa Gómez*, Yagamare Fall*

Departamento de Química Orgánica, Facultad de Química, Universidad de Vigo, 36200 Vigo, Spain

ARTICLE INFO

Available online 13 June 2009

ABSTRACT

Article history: Two new vitamin D₂ analogues, (22Z)-25-(OH)-D₂ and (22Z)-1α,25-(OH)₂-D₂, were serendipitously syn-Received 5 May 2009 thesized from vitamin D₂ and using the Julia-Kocienski olefination. Revised 5 June 2009 Accepted 9 June 2009

Keywords: Vitamin D Calcitriol Vitamin D2 Stereoselective synthesis

The classical Julia olefination, also known as the Julia-Lythgoe olefination, was first described in 1973 by Julia and Paris.¹ Since then a variant of this reaction, the modified or one-pot Julia olefination,² also known as the Julia-Kocienski reaction, has emerged as a very powerful method for olefin synthesis. The stereochemical outcome of this reaction is generally predictable on the basis of the substrates and reaction conditions,^{2c,3} although some exceptions have recently been reported.⁴

As part of our ongoing programme on the synthesis of vitamin D and its analogues, we decided to prepare 25-hydroxyvitamin $D_2(1)$ and 1α ,25-dihydroxy vitamin D₂ (**2**) (Fig. 1); although considerable effort has been devoted to the synthesis of vitamin D₃ metabolites,⁵ very few syntheses of 25-(OH)-D₂ and 1a,25-(OH)₂-D₂ have been reported to date.⁶

Our approach was based on generation of the side chain by Julia-Kocienski reaction of an appropriate aldehyde with sulfones 3, which bear a methyl ester group offering the possibility of easy modification at C-25 (Scheme 1).

It was anticipated that coupling of sulfones 3 with aldehyde 4 would lead stereoselectively to the formation of the *E* olefin. Much to our surprise, however, despite numerous changes in reaction conditions (cf. Table 1), only the Z olefin 5 could be isolated.

The optimized reaction conditions to synthesize Z olefin 5 were established to be reacting aldehyde **4** with sulfone **3a** (1.45 equiv) and LiHMDS (1.36 equiv) at -78 °C.

Benzothiazole 3a was efficiently prepared from commercially available alcohol 6 and 2-mercaptobenzothiazole (7) using Mitsunobu conditions⁷ followed by oxidation of intermediate **8** (Scheme 2). Coupling of **3a** with aldehyde **4** gave exclusively Z olefin **5** in 75% yield.

This unexpected and unprecedented result prompted us to consider the synthesis of 22Z vitamin D₂ analogues. The analogue (22Z)-25-OH-D₂ was prepared as shown in Scheme 3 starting from the Inhoffen-Lythgoe diol (9), which is easily obtained by degradation of vitamin D₂.⁸ Protection of the hydroxyl groups of **9**, followed by selective deprotection of the primary alcohol, afforded compound **10** in 79% overall yield; and TPAP oxidation⁹ of alcohol 10 then afforded aldehyde 4 in 93% yield. Julia-Kocienski olefination of 4 with sulfone 3a was best carried out in THF at -78 °C using LiHMDS as base: under these conditions, the Z olefin 5 was obtained in 75% yield. Reaction of 5 with methyllithium, followed by removal of the silvl protecting group with TBAF, gave diol 11 in 78% overall yield; and TPAP oxidation of the C8 hydroxyl group, followed by protection of the C25 hydroxyl with TMS, afforded ketone 12 in 85% overall yield. Wittig-Horner coupling of ketone 12 with phosphine oxide **13**,¹⁰ followed by removal of the silyl protecting group, then afforded the target vitamin D_2 analogue 14^{11} in almost quantitative yield.

For the synthesis of $(22Z)-1\alpha,25-(OH)_2-D_2$ (20) we decided to start from alcohol 15 (Scheme 4), which is readily obtained in large quantities from vitamin D₂ using the procedures described by Calverley¹² and later modified by Choudhry.¹³

TPAP oxidation of 15 afforded aldehyde 16 in 95% yield, and Julia-Kocienski olefination of 16 with sulfone 3a, gave a 65% yield of ester 17, which upon reaction with methyllithium in ether at -78 °C yielded alcohol **18**. Removal of the silyl protecting groups of 18 with TBAF in THF afforded a 93% yield of triol 19, and

© 2009 Elsevier Ltd. All rights reserved.

^{*} Corresponding authors. Tel.: +34 986 812320; fax: +34 986 81 22 62 (Y.F.). E-mail addresses: ggomez@uvigo.es (G. Gómez), yagamare@uvigo.es (Y. Fall).

^{0040-4039/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.06.049

Figure 1. Structures of 25-hydroxyvitamin D_2 (1) and 1 α ,25-dihydroxyvitamin D_2 (2).

photoisomerization of **19** using anthracene as sensitizer finally gave the target analogue 20^{14} in 85% yield.

In conclusion, we have synthesized two new vitamin D_2 analogues, (22Z)-25-OH- D_2 (**14**) and (22Z)-1 α ,25-(OH)₂- D_2 (**20**), using a Julia–Kocienski olefination with an unexpected stereoselectivity. Compound **14** was synthesized from the Inhoffen–Lythgoe diol (**9**) in 10 steps and 33% overall yield, and compound **20** from readily accessible alcohol **15** in five steps and 41% overall yield. We are currently using our method to synthesize new vitamin D_2 analogues with modifications at C-25 for biological evaluation and SAR studies. Small samples of these new vitamin D_2 analogues (**14** and **20**) are available upon request for biological evaluation.

Table 1

Entry	Solvent	М	Phenyltetr	Phenyltetrazole (PT)		Benzothiazole (BT)	
			% Yield 5	E:Z	% Yield 5	E:Z	
1	THF	Li	35 ^a	0:100	75 ^a	0:100	
2	THF	К	0 ^b				
3	THF	Na	57 ^a	0:100			
4	DME	К	4 ^c	0:100			
5	DME	Na	0 ^b				

Conditions: ^a Aldehyde **4** (1 equiv), sulfone (1.45 equiv), base (1.36 equiv), -78 °C; ^b aldehyde **4** (1.5 equiv), sulfone (1 equiv), base (1.1 equiv), -55 °C; ^c aldehyde **4** (1 equiv), sulfone (1.45 equiv), base (1.36 equiv), -55 °C.

Scheme 2.

Scheme 3. Reagents and conditions: (i) (a) TESCI, imid, CH₂Cl₂, 0 °C (80%); (b) TBAF, THF (99%); (ii) TPAP, NMO, CH₂Cl₂ (93%); (iii) **3a**, LiHMDS, THF, -78 °C (75%); (iv) (a) MeLi, Et₂O, -78 °C (79%); (b) TBAF, THF (99%); (v) (a) TPAP, NMO, CH₂Cl₂ (98%); (b) TMS-imidazole (87%); (vi) (a) **13**, *n*-BuLi, THF, -78 °C (90%); (b) TBAF, THF (99%).

Scheme 4. Reagents and conditions: (i) TPAP, NMO, CH₂Cl₂, molecular sieves (95%); (ii) **3a**, LiHMDS, THF, -78 °C (65%); (iii) MeLi, Et₂O, -78 °C (85%); (iv) TBAF, THF (93%); (v) anthracene, Et₃N, *hv*, CH₂Cl₂, MeOH (85%).

Acknowledgements

This work was financially supported by the Spanish Ministry of Education and Science (CTQ2007-61788) and the Xunta de Galicia (INCITE08PXIB314253PR, INCITE08ENA314019ES and INCITE08P-XIB314255PR). The work of the NMR and MS divisions of the research support services of the University of Vigo (CACTI) is also gratefully acknowledged.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.06.049.

References and notes

 (a) Julia, M.; Paris, J.-M. Tetrahedron Lett. **1973**, *14*, 4833–4836; (b) Vedejs, E. Stud. Nat. Prod. Chem. **1991**, 8, 205–218.

- 2. (a) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Tetrahedron Lett. 1991, 32, 1175-1178; (b) Baudin, J. B.; Hareau, G.; Julia, S. A.; Lorne, R.; Ruel, O. Bull. Soc. Chim. Fr. 1993, 130, 856-878; (c) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002. 2563-2585.
- 3 (a) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 26-28; (b) Kocienski, P. J.; Bell, A.; Blakemore, P. R. Synlett 2000, 365-366.
- 4 (a) Sorg, A.; Brückner, R. Synlett 2005, 289-293; (b) Vaz, B.; Alvarez, R.; Souto, J. A.; de Lera, A. R. Synlett 2005, 294-298.
- (a) For general reviews of vitamin D chemistry and biology, see: Vitamin D: Chemistry, Biology and Clinical Application of the Steroid Hormone; Norman, A. W.; Bouillon, R.; Thomasset, M. Eds., Vitamin D Workshop: Riverside, CA, 1997.; (b) Feldman, D.; Glorieux, F. H.; Pike, J. W. Vitamin D; Academic: San Diego, CA, 1997; (c) Pardo, R.; Santelli, M. Bull. Soc. Chim. Fr. 1985, 98-114; (d) Dai, H.; Posner, G. H. Synthesis 1994, 1383-1398; (e) Zhu, G.-D.; Okamura, W. H. Chem. Rev. 1995, 95, 1877-1952; (f) Posner, G. H.; Kahraman, M. Eur. J. Org. Chem. 2003, 3889-3895.
- (a) Morzycki, J. W.; Schnoes, H. K.; DeLuca, H. F. J. Org. Chem. 1984, 49, 2148-2151; (b) Baggiolini, E. G.; Iacobelli, J. A.; Hennessy, B. M.; Batcho, A. D.; Sereno, J. F.; Uskokovic, M. R. J. Org. Chem. 1986, 51, 3098-3108; (c) Wilson, S. R.; Davey, A. E.; Guazzaroni, M. E. J. Org. Chem. 1992, 57, 2007-2012; (d) Granja, J. R.; Castedo, L.; Mouriño, A. J. Org. Chem. 1993, 58, 124-131; (e) Torneiro, M.; Fall, Y.; Castedo, L.; Mouriño, A. J. Org. Chem. 1997, 62, 6344-6352. and references therein; (f) Yamada, S.; Shiraishi, M.; Ohmori, M.; Takayama, H. Tetrahedron Lett. 1984, 25, 3347-3350.
- (a) Schenk, S.; Weston, J.; Anders, E. J. Am. Chem. Soc. 2005, 127, 12566-12576; (b) Ono, K.; Yoshida, A.; Saito, N.; Fujishima, T.; Honzawa, S.; Suhara, Y.; Kishimoto, S.; Sugiura, T.; Waku, K.; Takayama, H.; Kittaka, A. J. Org. Chem. 2003, 68, 7407-7415; (c) Mitsunobu, O. Synthesis 1981, 1-28; (d) Mitsunobu, O.; Kato, K. J. Org. Chem. 1970, 35, 4227-4229.
- (a) Leyes, G. A.; Okamura, W. H. J. Am. Chem. Soc. 1982, 104, 6099-6105; (b) Sardina, F. J.; Mouriño, A.; Castedo, L. J. Org. Chem. 1986, 51, 1264-1269.
- 9. Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639-666. 10. Mascareñas, J. L.; Mouriño, A.; Castedo, L. J. Org. Chem. 1986, 51, 1269-1272.

- 11. Selected data for compound 14: White solid; mp = 58–60 °C, $R_{\rm f}$ = 0.46 (50% EtOAc/hexane) ¹H NMR (CDCl₃, δ): 6.12 (1H, d, J = 11.2 Hz, H-6), 5.9 (1H, d, J = 11.2 Hz, H-7), 5.19 (1H, dd, J = 2 × 10.6 Hz, H-22 or 23), 5.09 (1H, dd, J = 2 × 10.6 Hz, H-22 or 23), 4.92 (1H, s, H-19), 4.67 (1H, s, H-19), 3.78 (1H, m, H-3), 1.03 (6H, s, H-26 and 27), 0.87 (3H, d, *J* = 6.8 Hz, H-28 or 21), 0.84 (3H, d, *J* = 6.9, H-28 or 21), 0.46 (3H, s, H-18); ¹³C NMR (CDCl₃, δ): 145.8 (C-10), 142.0 (C-8), 138.0 (C-5), 122.3 (CH, C-6), 118.1 (CH, C-7), 112.4 (C-19), 72.8 (C-25), 69.5 (CH, C-3), 57.2 (CH, C-17), 56.7 (CH, C-14), 54.2 (CH2, C-1), 53.8 (CH, C-24), 46.4 (CH₂), 43.2 (CH, C-20), 40.9 (CH₂), 35.8 (CH₂), 32.5 (CH₂), 29.6(CH₂), 28.1 (CH2), 27.8 (CH3, C-26 and 27), 24.0 (CH2), 22.6 (CH2), 21.5 (CH3, C-28), 16.5 (CH₃, C-21), 12.5 (CH₃, C-18); MS (FAB⁺) [*m*/*z*, (%)]: 412.32 ([M⁺], 100), 396.32 (22), 395.31 (68), 393.30 (20), 377.30 (17), 271.19 (19), 269.18 (33), 253.19 (28), 251.18 (10), 211,19 (11), 202.26 (19), 197.20 (10), 187.27 (15), 186.31 (61), 185.23 (12), 183.23 (15); HRMS (EI⁺): calcd for C₂₈H₄₄O₂ 412.3341, found 412.3330.
- 12 Calverley, M. J. Tetrahedron 1987, 43, 4609-4619.
- Choudhry, S. C.; Belica, P. S.; Coffen, D. L.; Focella, A.; Maehr, H.; Manchand, P. S.; Serico, L.; Yang, R. T. J. Org. Chem. 1993, 58, 1496-1500.
- 14. Selected data for compound **20**: White solid; mp = $33-35 \circ C$, $R_f = 0.50$ (100%) EtOAc). ¹H NMR (CDCl₃, δ): 6.35 (1H, d, J = 11.2 Hz, H-6), 6.00 (1H, d, J = 11.6 Hz, H-7), 5.31 (2H, m, H-19 and H-22 or 23), 5.17 (1H, dd, J = 2 × 10.6 Hz, H-22 or 23), 4.98 (1H, s, H-19), 4.41 (1H, m, H-1), 4.21 (1H, m, H-3), 2.77 (1H, m), 2.45 (2H, m), 2.25 (1H, m), 1.85 (4H, m), 1.55 (5H, m), 1.45 (4H, m), 1.35 (4H, m), 1.17 (3H, s, H-26 or 27), 1.18 (3H, s, H-26 or 27), 0.98 (3H, d, J = 6.8 Hz, CH₃-21 or 28), 0.94 (3H, d, J = 6.8 Hz, CH₃-21 or 28), 0.57 (3H, s, H-18); ¹³C NMR (CDCl₃, δ): 147.7 (C-10), 142.9 (C-8), 138.2 (C-5), 133.0 (CH-23), 128.5 (CH-22), 124.9 (CH-6), 117.1 (CH-7), 111.7 (CH2-19), 72.7 (C-25), 70.8 (CH-1), 66.9 (CH-3), 56.7 (CH-14), 56.4 (CH-17), 45.3 (CH₂), 45.9 (C-13), 42.8 (CH-24), 40.4 (CH₂), 35.0 (CH-20), 29.1 (CH₂), 27.7 (CH₂), 27.0 (CH₃-26 or 27), 26.7 (CH₃-26 or 27), 23.6 (CH₂), 22.3 (CH₂), 21.3 (CH₃-28), 16.4 (CH₃-18), 12.4 (CH₃-21); MS (EI⁺) [m/z, (%)]: 429.28 [(M+1)⁺, (6)], 428.27 [M⁺, (5)], 427.27 $[(M-1)^+, (3)], 411.27, (16), 277.09, (10), 269.14, (4), 230.20, (3), 199.15, (3);$ HRMS (EI⁺): calcd for C₂₈H₄₄O₃ 429.3369, found 429.3363.