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Abstract: We developed a new and short synthetic route to 2,7-di-
tert-butyl-trans-15,16-dimethyldihydropyrene (DHP) via tetra-
hydroxy[2.2]metacyclophane in four reaction steps with a total
yield of 37%. 2,7-Di-tert-butyl-trans-15,16-dimethyldihydro-
pyrene functionalized by acetoxy groups at 4-, 5-, 9-, 10-positions
was synthesized via 5,13-di-tert-butyl-8,16-dimethyl-1,2,9,10-
tetrahydroxy[2.2]MCP in five reaction steps with a yield of 24%,
and its DHP structure was determined by 1H NMR spectroscopy and
X-ray crystal-structure analysis.
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Dihydropyrene (DHP) derivatives have been attracting
considerable interests in various fields2a–f due to their
photochromic property between DHP and [2.2]metacyclo-
phane-1,9-dienes ([2.2]MCP-diene) since 1967.1

The synthetic route to di-tert-butyldimethylDHP (3),
which was the parent compound of DHP, was developed
by Tashiro3 and improved by Mitchell.4 This route via
dithia[3.3]MCP 2 required six reaction steps, and a total
yield of 45% was achieved from 4-tert-butyltoluene 1
(Scheme 1). Each reaction yield of this route was over
76%, but the long reaction sequence and requirement of
highly skilled techniques restricted the practical applica-
tions of DHP as advanced materials.

Previously, we have reported facile and one-step synthesis
of 5,13-di-tert-butyl-8,16-dimethyl-1,2,9,10-tetrahydroxy-
[2.2]MCP (6) from the bezenedialdehyde derivative 5.5a,b

The MCP 6 has the potential to be the intermediate in
DHP formation because it has two trans-diols at both its

bridge positions, the reduction of which would afford a
[2.2]MCP-diene, which is an equivalent of 3.

However, the benzene-annulated DHP at the [e]-position
showed a high quantum yield of photoisomerization6 and
possessed suitable properties to qualify as switching
materials.2b,d,e It is also expected that DHP substituted at
the [e]-position or 4-, 5-, 9-, 10-positions could be pre-
pared by using 6 as the intermediate in short reaction
steps, and these DHP could be investigated for the various
purposes. In this paper, we present a simple and short syn-
thetic route to 3 and 9, which is substituted by acetoxy
groups at 4-, 5-, 9-, 10-positions, via 6 as the intermediate.

The synthesis of 3 was shown in Scheme 2. 2,6-Bis(bromo-
methyl)-4-tert-butyltoluene (4) and 2,6-di-formyl-4-tert-
butyltoluene (5) were synthesized with yields of 90% and
70%, respectively.4,5a Pinacol coupling of 5 in an ice bath
afforded 6 in 79% yield, while previously reported meth-
ods afforded 6 only in 33% yield at room temperature.5a,b

The MCP 6 was reduced to 3 using imidazole, chlo-
rodiphenylphosphine, iodine, and Zn powder. This meth-
od, which produced cis-olefin from trans-diol of
carbohydrate, has been reported by Zhengchun.7 A sus-
pension of 6, imidazole, and chlorodiphenylphosphine in
toluene was added to iodine at reflux temperature and
stirred for 1 hour. Zinc powder was added, and the mix-
ture was stirred for 8 hours to afford 3 and 7 in 75% and
7% yields, respectively.8 This synthetic route afforded 3
with a total yield of 37%.

The expected reaction mechanism from 6 to 3 is shown in
Scheme 3. As a first step, chlorodiphenylphosphine and
imidazole gave imidazolium-solvated complex 8.9 The
reaction of 6 and 8 was guessed to form cyclic phosphoni-
um ion 9 and iodo-phosphinate 10 as the intermediates.7,10

The elimination of iodine and diphenylphosphinic acid
from iodo-phosphinate 10 provided corresponding olefin.

The synthesis of 12 is shown in Scheme 4. Previously, we
have reported the two-step oxidation of 6 to 11 with a
yield of 31%.11 Here, we developed a one-step oxidation
of 6 using Ac2O and DMSO.12 A solution of 6 in DMSO
and Ac2O was degassed in vacuo, and the reaction mixture
was stirred under a nitrogen atmosphere to afford 11 in
98% yield.13 Treatment of 11 with zinc powder, Ac2O,
and Et3N

14a,b afforded 12 functionalized by acetoxy
moieties at 4-, 5-, 9-, 10-positions in 50% yield.15 This
synthetic route afforded 12 in 24% yield from 1.
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In 1H NMR spectra, the chemical shifts of two signals of
methyl groups in 7 and one signal of 12 were observed at
d = –4.10, –4.17, and –3.28 ppm, respectively. This result
estimated that 7 and 12 had DHP forms in which internal
methyl groups were influenced by a strong shielding
effect. The chemical shifts of the internal methyl protons
of 7 shifted to higher magnetic fields than those of 3
(d = –4.04 ppm)4 by 0.06–0.13 ppm. In contrast, the sig-
nal of internal methyl protons of 12 shifted downfield
when compared to those of 3 by 0.75 ppm. These upfield
and downfield shifts suggested that the aromaticity of
DHP was influenced by the electron-donating16 or elec-
tron-withdrawing groups at 4-, 5-, 9-, 10-positions.

X-ray crystallography also clarified that 12 formed the
DHP structure (Figure 1).17 A larger alternation of the
short and long bonds was observed for the periphery of 12
(1.346–1.432 Å) than the periphery of 3 (1.387–1.402
Å).18 This result also confirmed that the aromaticity of 12
decreased in comparison to that of 3 due to the acetoxy
groups at 4-, 5-, 9-, 10-positions of 12.

In summary, we developed a new and short synthetic
method to 3. This synthetic route afforded 3 in four reac-
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tion steps with a total yield of 37%. In addition, function-
alized DHP 12 was synthesized in five reaction steps from
1 with a total yield of 24%. X-ray structure analysis and
1H NMR spectrum of 12 confirmed the DHP structure of
12 and proved that the aromaticity of 12 decreased in
comparison to that of 3. We believe that these novel syn-
thetic routes to DHP could be useful for practical applica-
tions of DHP in various fields.
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