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The present study describes the first example of synthesis of pharmaceutically relevant N-heterocycles
like substituted quinolines, acridines and 1,8-naphthyridines in water under air using alcohols in pres-
ence of a new water soluble Ir-complex. The viability and efficiency of this approach was demonstrated
by the efficient synthesis of biologically active natural product (±)-galipinine and gram scale synthesis of
various N-heteroaromatics. Several kinetic experiments and DFT calculations were carried out to support
the plausible reaction mechanism which disclosed that this system followed a concerted outer sphere
mechanism for the dehydrogenation of alcohols.

� 2019 Elsevier Inc. All rights reserved.
1. Introduction

As fossil feedstocks as well as the crude oil reserve are decreas-
ing rapidly, the search for alternative pathways for the production
of fine chemicals and fuels has become inevitably significant [1].
Alcohols are inexpensive precursors and easily accessible by con-
version of biomass or fermentation process [2,3]. Hence, develop-
ment of efficient and sustainable methodologies for the
transformation of alcohols to fine chemicals is highly desirable.

Among various nitrogen containing heteroaromatics, quinoli-
nes, acridines and naphthyridines have substantial importance,
owing to their higher abundance in various natural products and
pharmacologically important drugs [4–6]. Commonly quinoline
and naphthyridine scaffolds were synthesized following the
Friedländer synthesis, but owing to its high susceptibility towards
self-condensation, later on several metal/base catalyzed oxidative
cyclization reactions were developed using 2-aminobenzyl alcohol
[7–10]. However, most of these procedures required either large
excess of ketones/alcohols or sacrificial hydrogen acceptors
[11–14]. In recent years, transition metal catalyzed acceptorless
dehydrogenative condensation approach has received much atten-
tion for environmentally benign CAN bond formation reactions
[15–20]. Following this protocol, Milstein, Beller, Kempe and
others reported formation of various N-heterocyclic compounds
[21–24]. Similar transformations using the dehydrogenative aldol
condensation strategy were also well known in literature for the
sustainable CAC bond formation [25–32]. The catalytic synthesis
of quinolines and naphthyridines via cyclization of 2-
aminobenzyl alcohol with either ketones or alcohols was achieved
using Ru, Ir, Pd and other metals [23,33–36]. Notably, most of these
methodologies inevitably required organic solvents. Although,
organic solvents have many advantages, they are toxic, flammable
and relatively expensive [37]. On the other hand, water as a solvent
has many potential benefits over organic solvents as it is environ-
mentally friendly, safe, cheap, and easy to separate from organic
products.

In the last few decades, there has been a growing interest in uti-
lization of water as a solvent [38]. For that purpose numerous
water soluble metal complexes were synthesized and their cat-
alytic activity explored [39–43]. Lately, based on the alcohol dehy-
drogenation strategy, CAC and CAN bond formation reactions in
water were reported by Williams, Fujita, Yamaguchi, Li, and others
[44–55]. For the synthesis of nitrogen containing heteroaromatics,
the coupling reaction of 2-aminoaryl alcohol with sustainable and
readily available alcohols following the double dehydrogenation
strategy is challenging in aqueous medium and to the best of our
knowledge has not yet been reported.

For the designing of an efficient catalytic system, metal-ligand
cooperativity emerged as a powerful tool which received much
attention in last few decades [56–58]. In this regard, 2-
hydroxypyridine containing ligands represent an important class
of cooperative ligands. Various transition metal complexes bearing
2-hydroxypyridine fragment containing ligands were synthesized
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Fig. 1. Solid state structures of complex 1 (30% thermal ellipsoids).
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and successfully explored in several transformations such as trans-
fer hydrogenation, CO2 hydrogenation, dehydrogenation of alco-
hols, dehydrogenation and hydrogenation of heterocycles, water
oxidation, etc. [41,59–63].

Herein, we report the synthesis and catalytic activity of a new
phosphine-free water soluble Ir-complex bearing 2-(2-benzimida
zolyl)-6-hydroxypyridine ligand. Remarkably, a variety of quinoli-
nes, acridines and naphthyridines were synthesized in water under
air utilizing this Ir-complex (Scheme 1). To the best of our knowl-
edge, this is the first report for oxidative cyclization of 2-aminoaryl
alcohols or 2-nitroaryl alcohols with alcohols in water.

2. Results and discussion

Inspired by the high catalytic activities of bidentate N-
containing Ir-complexes [40,41,64], several substituted 2-(2-
benzimidazolyl) pyridine ligand containing Ir(III) complexes were
synthesized in good yields and complex 1 was characterized by
X-ray diffraction (Fig. 1). The catalytic activity of the newly synthe-
sized complexes was investigated for the dehydrogenative cou-
pling between 2-aminobenzyl alcohol and 1-phenylethanol in
water (Table 1).

Preliminary results showed that the reaction was facilitated in
air compared to argon (Table 1, entry 2) [65]. Several Ir-catalysts
were screened and among them cat. 1 displayed superior activity
(Table 1). Notably, cat. 1 and cat. 6 containing the easily deproto-
nated hydroxyl-pyridine group, showed significantly higher reac-
tivity compared to their AOMe (cat. 2 and 7) and AMe (cat. 3
and 8) analogue respectively. Optimization of catalyst amount,
base and amino alcohol/alcohol ratio suggested that 1.5 mol% of
catalyst 1 was sufficient to achieve the 97% yield of 2-
phenylquinoline (2a) within 24 h in presence of 1.5 equiv. of
KOH (Table 1, entries 3–19). In contrast, using acetophenone, this
catalytic system delivered quantitative yield of 2a within 6 h
(Table 1, entry 22) [13]. This result demonstrated that, compared
to ketones, the dehydrogenative coupling of 2-aminobenzyl alco-
hol was more challenging with easily accessible alcohols.

Using the optimized reaction conditions, this protocol was
applied for the coupling of various secondary alcohols with 2-
aminobenzyl alcohol and the results are summarized in Table 2.
Different substituted secondary alcohols bearing both electron
donating and withdrawing groups in para and meta position
afforded good to excellent yields (78–98%) of quinoline derivatives
(2a-2g). Substitution in the ortho position of secondary alcohol
delivered poor yield and considerable amount of dehalogenated
quinoline was observed as by-product (2h). Moreover, 1-(2-
naphthalenyl)ethanol and heteroatom substituted alcohols were
converted successfully (77–92%) under the reaction conditions
(2i-2k). Acyclic aliphatic alcohols also reacted well and delivered
the desired products (2l-2n). The scope of the reaction was further
explored towards the coupling of substituted 2-aminobenzyl
alcohols with various alcohols (Table 3). Reaction of electron
Scheme 1. Synthesis of N-heteroaromatics follo
withdrawing as well as electron donating group substituted
2-aminobenzyl alcohols afforded the corresponding products in
good to excellent yields (3a-3g). Notably, naphthyl substituted
2-aminobenzyl alcohol also delivered good yield (3h).

In the acceptorless dehydrogenative coupling reaction using
alcohols, the liberated hydrogen could be used in transfer hydro-
genation of nitro functionality in situ without using any external
reducing agents [66,67]. As 2-aminoaryl alcohols can be easily
accessed from 2-nitroaryl alcohols, we were interested to explore
this strategy for the synthesis of quinolines directly from 2-
nitroaryl alcohols. Using this protocol various substituted aryl alco-
hols, heteronuclei containing alcohols and aliphatic alcohols fur-
nished the desired products in good to excellent yields ((Table 4;
4a-4g; 74–94%).

Acridine derivatives are highly important N-heterocyclic moiety
which has potential applications as antiparasitic drugs [5,68].
Owing to the widespread applicability of the acridine derivatives,
we were fascinated to synthesize them by using the dehydrogena-
tive condensation strategy. Several fused quinolines and acridines
were smoothly synthesized from 2-aminobenzyl alcohols and cyc-
lic alcohols employing the standard reaction conditions (Table 5;
5a-5h). Interestingly, with decreasing ring size of the cyclic alco-
hols, the yield of fused quinoline derivatives increases (5a-5c) [5].

1,8-Naphthyridine derivatives have significant importance in
medicinal chemistry and materials science. Inspired by their mul-
tidirectional biological properties we next explored viable synthe-
sis of 1,8-naphthyridines in water. Notably, this protocol efficiently
delivered a variety of 1,8-naphthyridine derivatives (Table 6, 6a–
6g). Notably, 1-(2-pyridinyl) ethanol with strong chelation site
wing the double dehydrogenation strategy.



Table 1
Optimization for the synthesis of 2-phenylquinoline from 2-aminobenzyl alcohol.a

Entry Ir-complex (x mol%) Base (y equiv.) Amino alcohol/alcohol Yield (%)b

1c Cat. 1 (2.0) KOH (0.75) 1:1.2 68
2 Cat. 1 (2.0) KOH (0.75) 1:1.2 79
3 Cat. 1 (2.0) KOH (1.0) 1:1.2 84
4 Cat. 1 (2.0) KOH (1.5) 1:1.2 90
5 Cat. 1 (2.0) KOH (1.5) 1:1.5 98
6 Cat. 2 (2.0) KOH (1.5) 1:1.5 49
7 Cat. 3 (2.0) KOH (1.5) 1:1.5 31
8 Cat. 4 (2.0) KOH (1.5) 1:1.5 27
9 Cat. 5 (2.0) KOH (1.5) 1:1.5 43
10 Cat. 6 (2.0) KOH (1.5) 1:1.5 73
11 Cat. 7 (2.0) KOH (1.5) 1:1.5 21
12 Cat. 8 (2.0) KOH (1.5) 1:1.5 37
13 Cat. 1 (2.0) NaOH (1.5) 1:1.5 87
14 Cat. 1 (2.0) K2CO3 (1.5) 1:1.5 65
15 Cat. 1 (2.0) Cs2CO3 (1.5) 1:1.5 69
16 Cat. 1 (1.5) KOH (1.5) 1:1.5 97
17 Cat. 1 (1.5) KOH (0.25) 1:1.5 <10
18 Cat. 1 (1.5) KOH (0.5) 1:1.5 31
19 Cat. 1 (1.5) KOH (0.75) 1:1.5 53
20 – KOH (1.5) 1:1.5 –
21 [Cp*IrCl2]2 (1.5) KOH (1.5) 1:1.5 19
22d Cat. 1 (1.0) KOH (1.5) 1:1.5 >99

a Reaction conditions: 2-aminobenzyl alcohol (0.25 mmol), Ir-complex (x mol%), KOH (y equiv.), water (1.5 mL) at 120 �C for 24 h under air.
b Yield determined by GC analysis using n-dodecane as an internal standard.
c Under argon atmosphere.
d Reaction with 2-aminobenzyl alcohol (0.25 mmol) and acetophenone (0.375 mmol) for 6 h.
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and also heteroatom containing 1-(3,4-methylenedioxyphenyl)
ethanol were efficiently converted to the expected products (6d-
6e). Additionally, aliphatic cyclic and acyclic alcohols like
cyclopentanol and 1-phenyl-1-propanol were found to be efficient
coupling partners for the synthesis of 1,8-naphthyridine deriva-
tives (Table 6, entries 6f-6g).
3. Practical applicability of the methodology

Next, we checked the reusability of this catalytic system for the
synthesis of 2-phenylquinoline in water by simple phase separa-
tion technique. The recovered aqueous solution containing the cat-
alyst could be utilized for the synthesis of 2-phenylquinoline up to
the fourth run although yields reduced significantly after the sec-
ond run (Table S2). To demonstrate the synthetic applicability of
this methodology, biologically active natural product (±)-
galipinine was synthesized [69,70]. Following the optimized condi-
tions, 2l was smoothly prepared from 2-aminobenzyl alcohol.
Applying the same catalytic system, hydrogenation of 2l in water
followed by methylation using HCHO yielded (±)-galipinine (2lb)
in excellent yield (Scheme 2).

This protocol was extended towards the gram scale synthesis of
a variety of quinolines, acridines and naphthyridines in water
under air (Table 7). The green chemistry metrics [71] for the syn-
thesis of 2-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)quinoline (2l) was



Table 2
Synthesis of quinolines from 2-aminobenzyl alcohol and various alcohols.a

a Reaction Conditions: 2-aminoaryl alcohol (0.5 mmol), alcohol (0.75mmol), KOH (0.75 mmol), water (3.0 mL), isolated yields.
b Cat. 1 (2.0 mol%) for 36 h.

Table 3
Synthesis of quinolines from various 2-aminobenzyl alcohols in water.a

a Reaction Conditions: 2-aminoaryl alcohol (0.5 mmol), alcohol (0.75mmol), KOH (0.75 mmol), water (3.0 mL), isolated yields.
b 2.0 mol% of Cat. 1 was used.
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Table 6
Dehydrogenative synthesis of 1,8-naphthyridine derivatives.a

a Reaction Conditions: 2-aminoaryl alcohol (0.5 mmol), alcohol (0.75mmol), KOH (0.75 mmol), water (3.0 mL), isolated yields.

Table 4
Synthesis of quinolines from 2-nitrobenzyl alcohols.a

a Reaction Conditions: 2-nitrobenzyl alcohol (0.5 mmol), alcohol (1.5 mmol), KOH (0.75 mmol), water (3.0 mL), isolated
yields.

Table 5
Dehydrogenative synthesis of fused quinoline derivatives.a

a Reaction Conditions: 2-aminoaryl/2-nitrobenzyl alcohol (0.5 mmol), alcohol (0.75 mmol), KOH (0.75 mmol), water
(3.0 mL), isolated yields.
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Scheme 2. Synthesis of bio-active natural product: (±)-galipinine.

Fig. 2. Time course of the reaction for the synthesis of 2-phenylquinoline.
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estimated on a preparative scale with an E factor of 2.1, 87% atom
economy, 94% atom efficiency, 100% carbon efficiency, and 55%
reaction mass efficiency (Table 8), which provides a clear overview
Table 7
Gram scale synthesis of N-heterocycles.
of technical and environmental benefits and also indicates that this
methodology is highly sustainable.
4. Mechanistic insights

To understand the mechanism of this dehydrogenative coupling
reaction, several kinetic experiments and theoretical calculations
were carried out. The progress of the catalytic cyclization of 2-
aminobenzyl alcohol and 1-phenylethanol was monitored by GC-
analysis. From the plot it is evident that several intermediates were
involved in the course of the reaction (Fig. 2). Also it is noteworthy
that the concentration of in situ generated 2-aminobenzaldehyde
is much smaller than acetophenone, thus retarding the self-
condensation of 2-aminobenzaldehyde. Synthesis of 2a from 2-
aminobenzyl alcohol and acetophenone in presence of cat. 1
required only 4 h, while in absence of cat. 1, from 2-amino ben-
zaldehyde and acetophenone it took only 30 min (Scheme 3A–B).
Additionally, formation of quinoline was not detected from both
coupling of alcohol-alcohol or alcohol-ketone in the absence of
cat. 1 (Scheme 3C–D). These results suggested that cat. 1 facilitated
the dehydrogenation of the alcohols, and 2-amino benzaldehyde
and acetophenone were intermediates in this process.

As Ir-H species is considered as one of the intermediates in this
catalytic cycle [48], we independently synthesized the correspond-
ing Ir-H species by treating cat. 1 with 10 equiv. of KOtBu in iPrOH



Scheme 3. (I) Control experiments (II) Synthesis and reactivity of Ir-hydride.

Table 8
Evaluation of green metrics for the current methodology.
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at 82 �C for 1 h (Scheme 3E). A sharp singlet at d = �11.97 ppm in
1H NMR spectra confirmed the formation of Ir-H species [40]. This
complex under the standard reaction conditions yielded 81% of 2a
(Scheme 3F), which suggested that the proposed Ir-H complex was
the active intermediate in this reaction.

To understand the reaction mechanismmore clearly, DFT calcu-
lations for the dehydrogenation of 2-aminobenzyl alcohol were
performed (Fig. 3). In the DFT study we focused on two major
steps: (a) dehydrogenation of 2-aminobenzyl alcohol and (b)
ligand assisted hydrogen liberation. Initially, in presence of base
the precatalyst 1 would be converted to species I1 having pyrido-
nate ligand fragment [41,72]. Now, I1 could follow two pathways
for the alcohol dehydrogenation (i) outer sphere pathway or (ii)
inner sphere pathway (I2) [73]. In the concerted outer sphere path-
way, 2-aminobenzyl alcohol was dehydrogenated through an eight
membered transition state TS1out (DGǂ = 18.5 kcal/mol) where the
hydroxyl hydrogen of the 2-aminobenzyl alcohol was transferred
to the pyridonate oxygen and CAH was transferred to the Ir center,
resulting in the formation of Ir-H intermediate I3 [74,75]. However,
for the dehydrogenation of alcohol the stepwise outer-sphere



Fig. 3. DFT study: free energy profile for dehydrogenation of 2-aminobenzyl alcohol (Hybrid functional, M062X was used with the LANL2DZ basis set for Ir and 6-31G** basis
set for nonmetal elements). Cp* rings in the pictorial representations were omitted for clarity.
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pathway could not be ruled out [76]. Afterwards, hydrogen mole-
cule was eliminated from the metal hydride and ligand pendent
hydroxyl proton with an activation barrier of 30.3 kcal/mol, gener-
ating the active species (I1) [41]. On the other hand, in the inner
sphere route, first the metal-alkoxy complex (I2) was generated
from I1. Afterward, this alkoxy-complex underwent b-hydride
elimination through a four-membered transition-state (TS1in) with
an activation barrier of 48.6 kcal/mol and formed Ir-H species I3
[74]. Finally, hydrogen elimination from I3 regenerated the active
species I1. Catalyst 2–4 may follow inner sphere pathway for the
dehydrogenation of alcohol, as there is no hydroxyl group present
in the ligand. The activation energy for the dehydrogenation of 2-
aminobenzyl alcohol via the concerted pathway was much lower
(DGǂ = 21.7 kcal/mol) compared to the inner sphere route
(DGǂ = 48.6 kcal/mol). This clearly indicates that the outer sphere
pathway is more favoured over the inner sphere route (Fig. 2 and
SI, Fig. S3).
5. Conclusions

In conclusion, a new class of water soluble Ir-complexes was
synthesized and characterized. Among them 2-hydroxypyridine
based cat. 1 presented excellent catalytic activity and offered a
greener methodology for the synthesis of quinoline, 1,8-
naphthyridine and acridine derivatives from 2-aminoaryl alcohols
and substituted secondary alcohols in water under air. Interest-
ingly, combination of transfer hydrogenation and acceptorless
dehydrogenative coupling was demonstrated in a single process
for synthesis of quinolines starting from 2-nitrobenzyl alcohols.
This sustainable protocol was successfully applied for the synthesis
of biologically active natural product (±)-galipinine and gram scale
synthesis of important N-heterocycles. The green chemistry met-
rics were evaluated for the synthesis of 2-(2-(benzo[d]
[1,3]dioxol-5-yl)ethyl)quinoline, which showed the technical ben-
efits and sustainability of the present methodology. The proposed
reaction mechanism was supported by several control experi-
ments, kinetic studies and DFT calculations. To the best of our
knowledge, this is the first example for the synthesis of quinolines,
acridines and 1,8-naphthyridines in water using 2-aminobenzyl
alcohol and substituted secondary alcohols.
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