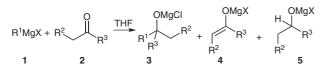
LaCl₃·2LiCl-Catalyzed Addition of Grignard Reagents to Ketones

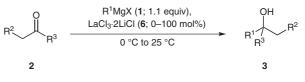

Albrecht Metzger, Andrei Gavryushin, Paul Knochel*

Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany Fax +49(89)218077680; E-mail: Paul.Knochel@cup.uni-muenchen.de *Received 18 February 2009*

Abstract: The addition of Grignard reagents to ketones using substoichiometric amounts of LaCl₃·2LiCl was studied. Catalytic amounts of LaCl₃·2LiCl (30 mol%) provide, in most cases, yields similar to those obtained using a stoichiometric amount.

Key words: 1,2-addition, lanthanides, Grignard reagents, functionalized organometallics, lanthanum trichloride

The addition of Grignard reagents 1 to ketones 2 leading to tertiary alcohols of type 3 is a standard transformation in organic synthesis (Scheme 1).¹



Scheme 1 Possible products of the reaction of a Grignard reagent with a ketone

Such 1,2-addition is often complicated if sterically hindered or unreactive Grignard reagents are used. In these cases, several side reactions such as enolization (leading to 4) or β -hydride transfer (leading to secondary alcohols 5) are observed. The formation of byproducts 4 and 5 can be considerably reduced by using a Lewis acid activation of the ketone 2. Lanthanide halides such as CeCl₃ introduced by Imamoto have proven to be especially effective.² However, the low solubility of CeCl₃ in THF requires the use of a stoichiometric amount of these relatively expensive salts.

Recently, we have reported the preparation of THF-soluble LaCl₃·2LiCl complex (**6**, 0.52–0.6 M in THF)³ which has been found highly efficient for improving of the addition of various Grignard reagents to ketones and imines.⁴ This method was later applied for the synthesis of tryptamines.⁵ However, LaCl₃·2LiCl (**6**) has been used so far only in stoichiometric amounts, while a catalytic version of this reaction should also be possible.⁶ Herein, we report the comparative study of the stoichiometric and catalytic 1,2-addition reaction of various Grignard reagents⁷ to ketones using 30 mol% of LaCl₃·2LiCl (**6**) (Scheme 2 and Table 1).

SYNLETT 2009, No. 9, pp 1433–1436 Advanced online publication: 18.05.2009 DOI: 10.1055/s-0029-1217169; Art ID: G07109ST © Georg Thieme Verlag Stuttgart · New York

Scheme 2 Reaction of Grignard reagents with ketones mediated by LaCl₃·2LiCl (6)

Thus, the reaction of cyclohexylmagnesium bromide (1a) with the readily enolizable ketone 2a in the presence of one equivalent of LaCl₃·2LiCl (6) provided the tertiary alcohol 3a in 93% yield (entry 1 of Table 1). By using 30 mol% of LaCl₃·2LiCl (6) a similar yield (87%) was achieved. Without the addition of LaCl₃·2LiCl (6) only 33% of the alcohol 3a was isolated.

The reaction of the secondary alkylmagnesium reagent (i-PrMgCl; 1b) with 1,3-diphenylacetone (2b) was strongly influenced by the addition of $LaCl_3 \cdot 2LiCl$ (6). Thus, the alcohol 3b was obtained in 86% with stoichiometric amount of **6** and in 65% yield in the presence of 30 mol% of **6** (entry 2). In the absence of $LaCl_3 \cdot 2LiCl(6)$, only traces of the alcohol **3b** were obtained due to the occurrence of competing reduction and enolization reactions. With MeMgCl (1c) which does not possess β -hydrogen atoms, similar yields were obtained regardless of the amount of lanthanum salts added (entry 3). Reaction of phenylmagnesium chloride (1d) with enolizable ketone 2b led to the desired alcohol 3d in 93-97% yield in the presence of either 30 mol% or 100 mol% of LaCl₃·2LiCl (6; entry 4). Without LaCl₃·2LiCl (6), a yield of 67% was achieved. In the reaction of naphthylmagnesium chloride (1e) with less sterically hindered cyclohexyl methyl ketone (2d), the influence of $LaCl_3 \cdot 2LiCl(6)$ was relatively strong (entry 5). The uncatalyzed reaction afforded the product in 22% yield; in the presence of 30 mol% of LaCl₃·2LiCl (6) a yield of 66% was obtained. Using stoichiometric amounts of LaCl₃·2LiCl (6) led to the product 3e in 76% yield. In the absence of a catalyst, sterically hindered Grignard reagents did not react satisfactorily with ketones bearing acidic protons. Thus, reaction of 2-(trifluoromethyl)phenylmagnesium chloride (1f) and acetophenone (2e) furnished the corresponding alcohol 3f in 72% yield only in the presence of $LaCl_3 \cdot 2LiCl$ (6), regardless of whether 100 mol% or 30 mol% were used (entry 6). A poor yield of **3f** (13%) was observed in the absence of LaCl₃·2LiCl (6). Treatment of dicyclopropyl ketone (2f), cyclopropyl methyl ketone (2g) and cyclohexane (2h) with various organomagnesium reagents 1g-i led to the desired alcohols 3g-i in similar yields almost independent of the

LaCl₃·2LiCl (6) amount (entries 7–9). However, the positive influence of LaCl₃·2LiCl (6) was well demonstrated in the case of heteroaromatic organomagnesium compounds such as the thiophenylmagnesium reagent **1j** and especially 2-pyridylmagnesium chloride (**1k**; entries 10 and 11). Reaction with ketones **2d** and **2a** led to the desired alcohols **3j** and **3k** in 71–86% yield only in the presence of LaCl₃·2LiCl (6). Using electron-rich arylmagnesium reagents **1e** and **1l** and enolizable ketones **2i** and **2j** the alcohols **3l** and **3m** (entries 12 and 13) were obtained in lower yields with $LaCl_3 \cdot 2LiCl$ (6) than without the use of 6. These results show that for the addition of electron-rich organomagnesium species the influence of $LaCl_3 \cdot 2LiCl$ (6) on the product yield can be negative.

Table 1	Reaction of Grignard Reagents of Type	1 with Different Ketones of Type 2 in the	Presence of $LaCl_3 \cdot 2LiCl(6)^{8,9}$
---------	---------------------------------------	---	---

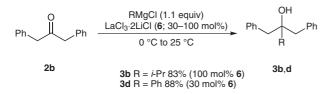
Entry	Grignard reagent of type 1	Ketone of type 2	Product of type 3	Yield (%) ^a [LaCl ₃ ·2LiCl (6 ; 100 mol%)]	Yield (%) ^a [LaCl ₃ ·2LiCl] (6 ; 30 mol%)]	Yield (%) ^a [LaCl ₃ ·2LiCl (6 ; 0 mol%)]
1	MgBr·LiCl 1a ^c	Ph Me	Ph HO Me	93	87	33 ^b
2	<i>i-</i> PrMgCl 1b ^d	PhPh 2b	3a Ph Ph Ph Ph Ph	86	65	<3
3	MeMgCl 1c ^d	0 2c	HO Me	95	94	69
4	MgCl 1d ^d	Ph Ph 2b	Ph_Ph	97	93	67 ^b
5	MgCI-LiCl	Me	3d	76	66	22
6	1e ^e CF ₃ MgCl·LiCl	2d Me 2e	3e HO Me CF ₃ 3f	72	72	13
7	NC MgCl·LiCl	2e V 2f	HO	77	84	87
8	EtO ₂ C-MgCl·LiCl 1h ^e	↓ Me 2g	3g HO Me CO ₂ Et 3h	76	83	81

Synlett 2009, No. 9, 1433-1436 © Thieme Stuttgart · New York

Entry	Grignard reagent of type 1	Ketone of type 2	Product of type 3	Yield (%) ^a [LaCl ₃ ·2LiCl (6 ; 100 mol%)]	Yield (%) ^a [LaCl ₃ ·2LiCl] (6 ; 30 mol%)]	Yield (%) ^a [LaCl ₃ ·2LiCl (6 ; 0 mol%)]
9	MeOMgCl·LiCl 1i ^c	2h	OH OMe	73	74	84
10	MgCl·LiCl 1j ^e	Me 2d	HO Me	54	86	65
11	MgCl·LiCl 1k°	Ph_Me 2a	HO Me Ph	71	67	22
12	MgCI-LiCi	2i	OH	59	65	75
13	1e° SMe MgCI·LiCi 1l°	Me OMe	3I MeO MeS 3m	55	62	70

 Table 1
 Reaction of Grignard Reagents of Type 1 with Different Ketones of Type 2 in the Presence of LaCl₃·2LiCl (6)^{8,9} (continued)

^a Isolated yields.


^b Yields determined by ¹H NMR.

^c Grignard reagent prepared by direct magnesium insertion in the presence of LiCl according to ref. 7a.

^d Grignard reagent is commercially available by Chemetall GmbH (Frankfurt).

^e Grignard reagent prepared by halogen-magnesium exchange reaction using *i*-PrMgCl·LiCl according to ref. 7b.

An upscaling of the above described procedure gave satisfactory results (Scheme 3). Reaction of ketone **2b** either with secondary alkylmagnesium reagent **1b** in the presence of LaCl₃·2LiCl (**6**; 100 mol%) or with arylmagnesium reagent **1d** in the presence of LaCl₃·2LiCl (**6**; 30 mol%) furnished the expected alcohols **3b** and **3d** in 83– 88% yield.

Scheme 3 Upscaled reaction (20 mmol) of ketone 2b with either *i*-PrMgCl (2b) using 100 mol% of 6 or PhMgCl (3d) using 30 mol% of 6.

In conclusion, we have shown that it is possible to perform the addition of alkyl-, aryl- and heteroarylmagnesium reagents to various ketones in satisfactory yields using catalytic amount of LaCl₃·2LiCl (**6**). Further studies to improve the scope of this catalytic activation of ketones with $LaCl_3 \cdot 2LiCl(6)$ is underway in our laboratory.

Acknowledgment

We thank the Fonds der Chemischen Industrie, and the DFG for financial support. We thank Chemetall GmbH (Frankfurt) for the generous gift of Grignard reagents and LaCl₃·2LiCl solution.

References and Notes

- For recent reviews, see: (a) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W.-L. *Chem. Rev.* **2002**, *102*, 2227.
 (b) Steel, P. G. J. Chem. Soc., Perkin Trans. 1 **2001**, 2727.
- (2) (a) Imamoto, T.; Sugiyura, Y.; Takiyama, N. *Tetrahedron Lett.* **1984**, 25, 4233. (b) Imamoto, T. *Pure Appl. Chem.* **1990**, 62, 747. (c) Martin, C. L.; Overman, L. E.; Rohde, J. M. J. Am. Chem. Soc. **2008**, 130, 7568. (d) Wang, Q.; Chen, C. Org. Lett. **2008**, 10, 1223.
- (3) LaCl₃·2LiCl solution in THF is commercially available from Chemetall GmbH, Frankfurt (Germany).
- (4) Krasovskiy, A.; Kopp, F.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 497.
- (5) Nicolaou, K. C.; Krasovskiy, A.; Trepanier, V. E.; Chen, D. Y.-K. Angew. Chem. Int. Ed. 2008, 47, 4217.

- (6) The addition of Grignard reagents to imines requires only 10 mol% of LaCl₃·2LiCl(6). An isolated example of the addition of PhMgBr to camphor using 10 mol% of LaCl₃·2LiCl has also been reported (ref. 4).
- (7) (a) For the preparation of Grignard reagents via direct magnesium insertion into aromatic halides in the presence of LiCl, see: Piller, F. M.; Appukkuttan, P.; Gavryushin, A.; Helm, M.; Knochel, P. *Angew. Chem. Int. Ed.* 2008, *47*, 6802. (b) For the preparation of Grignard reagents via halogen–magnesium exchange reaction, see: Krasovskiy, A.; Knochel, P. *Angew. Chem. Int. Ed.* 2004, *43*, 3333.
- (8) Typical Procedure 1 [30 mol% LaCl₃·2LiCl (6)]; Preparation of 1-Phenyl-1-[2-(trifluoromethyl)phenyl]ethanol (3f): In a flame-dried flask, flushed with argon, acetophenone (2e; 240 mg, 2.00 mmol) was added followed by $LaCl_3 \cdot 2LiCl$ (6; 1.15 mL, c = 0.52 M in THF, 30 mol%) and the mixture was stirred for 1 h. Then, THF (2.5 mL) was added. Into another flame-dried and argon-flushed flask 2-(trifluoromethyl)bromobenzene (495 mg, 2.20 mmol) was added followed by i-PrMgCl·LiCl (1.32 mL, c = 1.64 M in THF, 2.16 mmol). After GC analysis of a hydrolyzed aliquot showed full conversion, the resulting aromatic Grignard reagent 1f was added to the ketone at 0 °C. The reaction mixture was stirred at this temperature until full conversion was achieved. Then, sat. NH₄Cl solution (50 mL) was added and the layers were separated followed by extraction using Et_2O (3 × 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. Flash column chromatography (pentane– $Et_2O = 7:1 + 1.0$ vol% Et₃N) furnished the alcohol **3f** as a pale yellow liquid (381 mg, 72%). ¹H NMR (600 MHz, $C_4D_{10}O$): δ = 7.80 (d, J = 7.6 Hz, 1 H), 7.69 (d, J = 7.6 Hz, 1 H), 7.49 (t, J = 7.4Hz, 1 H), 7.35 (t, J = 7.6 Hz, 1 H), 7.29 (d, J = 8.1 Hz, 2 H), 7.18 (t, J = 7.6 Hz, 2 H), 7.11 (t, J = 7.4 Hz, 1 H), 4.31 (s, 1 H), 1.93 (s, 3 H). ¹³C NMR (150 MHz, $C_4D_{10}O$): $\delta = 149.9$ $(q, {}^{5}J_{CF} = 1.6 \text{ Hz}), 148.4 (q, {}^{3}J_{CF} = 1.4 \text{ Hz}), 131.6 (q, {}^{4}J_{CF} =$

1.1 Hz), 129.9, 129.5 (q, ${}^{2}J_{CF} = 31.6$ Hz), 128.8 (q, ${}^{3}J_{CF} = 6.7$ Hz), 128.4, 127.7, 127.1, 126.5 (q, ${}^{4}J_{CF} = 0.8$ Hz), 125.4, (q, ${}^{1}J_{CF} = 273.4$ Hz), 76.7, 33.0 (q, ${}^{5}J_{CF} = 1.7$ Hz). MS (70 eV, EI): m/z (%) = 266 (2) [M⁺], 251 (100), 231 (61), 211 (29), 183 (6), 169 (5), 121 (5). HRMS (EI): m/z calcd for C₁₅H₁₃F₃O: 266.0918; found: 266.0905. IR (ATR): 3463 (vw), 2983 (vw), 1602 (w), 1494 (w), 1446 (m), 1304 (vs), 1271 (s), 1164 (s), 1122 (vs), 1095 (s), 1032 (vs), 928 (m), 910 (m), 765 (vs), 754 (s), 698 (vs) cm⁻¹.

(9) Typical Procedure 2 [100 mol% LaCl₃·2LiCl (6)]: Preparation of 1-Methyl-1,2,3,4-tetrahydronaphthalen-**1-ol (3c)**: In a flame-dried flask, flushed with argon, α tetralone (2c; 292 mg, 2.00 mmol) was added followed by $LaCl_3 \cdot 2LiCl (6; 3.85 \text{ mL}, c = 0.52 \text{ M in THF}, 100 \text{ mol}\%)$ and the reaction mixture was stirred for 1 h. Then, MeMgCl (1c; 0.74 mL, c = 2.99 M in THF, 2.20 mmol) was added at 0 °C. The ice-bath was removed. After GC analysis of a hydrolyzed aliquot showed full conversion sat. NH₄Cl solution (50 mL) was added and the layers were separated followed by extraction using Et_2O (3 × 50 mL). The combined organic layers were dried over Na2SO4 and concentrated in vacuo. Flash column chromatography (pentane– $Et_2O = 9:1 + 1.0 \text{ vol}\% Et_3N$) furnished the alcohol **3c** as a white solid (307 mg, 95%); mp 92–94 °C. ¹H NMR $(300 \text{ MHz}, C_6 D_6): \delta = 7.52 - 7.58 \text{ (m, 1 H)}, 7.04 - 7.11 \text{ (m, 1)}$ H), 6.98-7.04 (m, 1 H), 6.84-6.90 (m, 1 H), 2.39-2.60 (m, 2 H), 1.42-1.70 (m, 5 H), 1.39 (s, 3 H). ¹³C NMR (75 MHz, C_6D_6): $\delta = 143.7, 136.2, 128.8, 127.1, 126.9, 126.5, 70.2,$ 40.0, 31.1, 30.2, 20.7. MS (70 eV, EI): *m/z* (%) = 162 (1) [M⁺], 147 (100), 129 (56), 119 (17), 91 (32), 84 (34), 44 (6). HRMS (EI): m/z calcd for C₁₁H₁₄O: 162.1045; found: 162.1040. IR (ATR): 3313 (m), 2969 (w), 2933 (m), 2865 (w), 1487 (m), 1440 (m), 1366 (m), 1337 (m), 1284 (m), $1230\,(w), 1184\,(m), 1152\,(m), 1103\,(s), 1066\,(m), 1048\,(m),$ 990 (m), 949 (m), 930 (s), 854 (m), 761 (vs), 728 (s), 686 (s) cm⁻¹.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.