Spin crossover in a heptanuclear mixed-valence iron complex[†]

Roman Boča,*^{*a*,*b*} Ivan Šalitroš,^{*a*} Jozef Kožíšek,^{*a*} Jorge Linares,^{*c*} Ján Moncoľ^{*a*} and Franz Renz^{*d*}

Received 16th June 2009, Accepted 2nd December 2009 First published as an Advance Article on the web 12th January 2010 DOI: 10.1039/b919120h

The complex $[Fe^{II}{(CN)Fe^{III}L^5}_6]Cl_2$ consists of a mixedvalence heptanuclear cyanide-bridged unit formed of a Schiffbase pentadentate ligand L^5 and it shows a spin crossover of the peripheral Fe^{III} centres.

Mononuclear complexes showing spin crossover (SC), predominantly those of Fe(II), have been studied extensively over a long period and several reviews about this phenomenon have been published.¹ Recently, there has been interest in dinuclear and polynuclear systems where the SC interferes with the magnetic exchange interaction.² In addition to numerous dinuclear systems, SC has also been reported for trinuclear, tetranuclear, and some polynuclear systems.³ Herein we report SC in a mixed-valence heptanuclear cyanide-bridged complex [Fe^{II}{(CN)Fe^{III}(L⁵)}₆]Cl₂ formed of a Schiff-base pentadentate blocking ligand L⁵.

The Schiff-condensation of *o*-salicylaldehyde with an aliphatic amine *pet* (1,6-diamino-4-azahexane) at a ratio of 2 : 1 provide the ligand H₂*salpet* (yellow oil). This ligand is asymmetric, having a propyl- and an ethyl-bridge to the central nitrogen atom: (OH)Ph-CH=N-(CH₂)₃-NH-(CH₂)₂-N=CH-Ph(OH). Found: C, 70.1; H, 7.12; N, 12.8. Calc. for C₁₉H₂₃N₃O₂: C, 70.1; H, 7.12; N, 12.9.

The mononuclear precursor [Fe(*salpet*)Cl] was synthesized as follows. A methanol solution of H₂*salpet* (5 mmol in 15 cm³) was combined with a methanol solution of FeCl₃·6H₂O (5 mmol in 30 cm³) accompanied with a colour change to dark-violet. Then triethylamine (10 mmol) was added. After 30 min of stirring at 50 °C the reacting mixture was cooled to room temperature and a dark-brown crystalline powder precipitated. This was separated by filtration and washed with cold methanol and diethylether. Yield– 85%. Found: C, 54.3; H, 5.10; N, 10.1. Calc. for C₁₉H₂₁N₃O₂FeCl ($M_r = 414.69$ g mol⁻¹) C, 55.0; H, 5.10; N, 10.1%. IR (KBr, $\tilde{\nu}$ /cm⁻¹): N–H, 3230; C=N, 1631, 1620, 1597. UV-Vis (Nujol, $\tilde{\nu}$ /cm⁻¹) 18000, 24000, 27500, 40000. According to the magnetic susceptibility, magnetization, Mössbauer spectra, and metal– ligand distances this complex is high-spin (S = 5/2).

The mononuclear precursor dissolved in methanol (1 mmol in 50 cm³) was combined with a methanol-water solution of $K_4[Fe(CN)_6]\cdot 3H_2O$ (0.167 mmol in 10 cm³ of CH₃OH-H₂O =

1 : 1). The colour changed from red-violet to blue. The mixture was stirred for 2 h at 50 °C and left to evaporate spontaneously for several days at room temperature. Blue polycrystalline powder was separated by filtration. Yield–90%. Found: C, 55.2; H, 5.01; N, 13.0. Calc. for C₁₂₀ H₁₂₆N₂₄O₁₂Fe₇Cl₂ ($M_r = 2558.26 \text{ g mol}^{-1}$) C, 56.3; H, 4.96; N, 13.1%. IR (KBr, $\tilde{\nu}/\text{cm}^{-1}$): C=N, 2078 (unsplit).⁴ The complex exhibits blue colour, typical of the molecular Prussian-blue analogues; the first absorption occurs at 17000 cm⁻¹. The hexacoordination of Fe^{II} by CN–Fe^{III} is also confirmed by the IR spectra (no splitting of the C≡N band, $\tilde{\nu} = 2078 \text{ cm}^{-1}$) and Mössbauer spectra (the area ratio Fe^{III} : Fe^{II} ~ 6 : 1, *i.e. ca* 14% of Fe^{II} at r.t.). The complex shows a molecular peak in the ESI-mass spectrum: m/z ($K^{2+}/2$) = 1244 g mol⁻¹, which matches the composition [K]Cl₂. Molar mass of [K^{2+1}] is 2488 g mol⁻¹. K is the heptanuclear molecular dication [Fe^{III} {(CN)Fe^{III} (*salpet*)}₆]²⁺.

Single-crystal X-ray diffraction studies of $[Fe^{II}({CN}-Fe^{II}(salpet))_{6}]Cl_{2}$; (hereafter 1) at room temperature revealed the presence of a heptanuclear complex cation $[Fe^{II}({CN})Fe^{III}(salpet)]_{6}]^{2+}$ and two chloride anions, which are disordered among three positions. The heptanuclear species has an inversion centre (Fig. 1). The Fe1–C bond lengths are in the range 1.879(9)-1.932(10) Å, Fe^{II}–C–N bond angles are in the range 177.3(8)-179.3(8)°, which deviate only slightly from linearity; these are similar to only reported $\{Fe^{II}Fe^{III}_{6}\}$ type complex $[Fe^{II}({CN})Fe^{III}(saldptm)]_{6}]Cl_{2}\cdot17.25CH_{3}OH$ (saldptm = bis(3-(salicylideneamino)propyl)methylamine, refcode: EKIJUD).⁶ The cyanide C–N bond distances are in the range 1.128(9)–1.144(9) Å, and they match other complexes with bridging cyanide bonds.^{6,7}

Fig. 1 X-ray structure of the heptanuclear complex $[Fe^{II}{(CN)Fe^{III}(salpet)}_{\delta}]^{2+}$ (hydrogen atoms omitted for clarity).

^aInstitute of Inorganic Chemistry, Institute of Physical Chemistry, Slovak Technical University (FCHPT), SK-812 37, Bratislava, Slovakia. E-mail: roman.boca@stuba.sk; Tel: 00421 2 59325 610

^bDepartment of Chemistry, University of SS Cyril and Methodius, Trnava, Slovakia

^cLaboratoire GEMAC, UMR CNRS 86, Université de Versailles, 78035 Versailles, France

^dInstitute of Inorganic Chemistry, Leibniz University, D-30167, Hannover, Germany

[†] Electronic supplementary information (ESI) available: electron, IR, ESI, and Mössbauer spectra. CCDC reference number 633798. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b919120h

Table 1 Mössbauer-spectra parameters for the ${Fe^{II}Fe^{III}}_{6}$ complex 1^a

T/K	Centre	$\Delta E_Q/\mathrm{mm~s^{-1}}$	$\delta/\mathrm{mm~s}^{-1}$	Area/%	$\chi_{\rm HS}$
20	LS-Fe(III)	2.514	0.103	21.5	0.73
	HS-Fe(III)	1.006	0.297	58.9	
	LS-Fe(II)	[0.15]	-0.057	19.6	
78	LS-Fe(III)	2.475	0.103	29.2	0.66
	HS-Fe(III)	0.951	0.312	57.8	
	LS-Fe(II)	[0.15]	-0.100	13.0	
120	LS-Fe(III)	2.466	0.104	25.3	0.70
	HS-Fe(III)	0.979	0.285	60.8	
	LS-Fe(II)	[0.15]	-0.063	13.9	
150	LS-Fe(III)	2.433	0.100	23.8	0.72
	HS-Fe(III)	0.986	0.275	61.5	
	LS-Fe(II)	[0.15]	-0.019	14.7	
180	LS-Fe(III)	2.452	0.050	12.5	0.85
	HS-Fe(III)	0.901	0.270	73.1	
	LS-Fe(II)	[0.15]	-0.175	14.4	
200	LS-Fe(III)	2.412	0.043	7.7	0.91
	HS-Fe(III)	0.937	0.246	78.6	
	LS-Fe(II)	[0.15]	-0.099	13.7	
300	LS-Fe(III)	_		0	1.00
	HS-Fe(III)	0.876	0.201	72.2	
	LS-Fe(II)	0.154	-0.162	27.8	

^{*a*} Estimate for the high-spin mole fraction of Fe(III): $x_{HS} = A_{HS}/(A_{HS} + A_{LS})$ [under the hypothesis of uniform Debye–Waller factors].

The Fe^{III}–N–C bond angles of 165.3(8)–173.8(6)° deviate more from linearity that the analogous bond angles in EKIJUD,⁶ but they span the range 150–180° for other complex with bridging cyanide ligands.⁷ The distances between Fe^{II} and Fe^{III} atoms are 5.026(3) (Fe1···Fe4), 5.045(3) (Fe1···Fe2), and 5.055(2) (Fe1···Fe3) Å. The geometry around the peripheral Fe^{III} ions is distorted due the nature of *salpet* pentadentate ligand. The bond distances between peripheral Fe^{III} and donor atoms are in the range 2.013(10)-2.058(9) Å for Fe^{III}–N(cyanide), 1.823(10)-1.960(6) Å for Fe^{III}–O(phenolate), 2.020(13)-2.161(9) Å for Fe^{III}–N(amine), and 1.832(15)-2.110(8) Å for Fe^{III}–N(imine), respectively. However, one pair of Fe^{III}–N(cyanide) bonds in *trans* position is shorter than the remaining pairs which indicates that the crystallographic centre Fe4 is more close to the LS state (s = 1/2).

The Mössbauer spectra for the heptanuclear complex (Fig. 2, Table 1) taken at T = 78 K show a coexistence of the low-spin Fe(III) [29%, $\Delta E_Q = 2.47$, $\delta = 0.10$] and of the high-spin Fe(III) [58%, $\Delta E_Q = 0.95$, $\delta = 0.31$], along with the presence of the low-spin Fe(II) [13%, $\Delta E_Q = 0.15$, $\delta = -0.10$]. The Mössbauer parameters are in mm s⁻¹ (calibrated to α -Fe at r.t). The central Fe(II) centre remains low-spin over all temperatures studied (20– 300 K). On heating the area-fractions associated with individual quadrupole doublets of six peripheral Fe(III) centres alter in favour of the high-spin Fe(III); the { ΔE_Q , δ } parameters stay almost constant. This is an unambiguous proof that thermally-induced spin crossover occurs. At T = 200 K the low-spin fraction of Fe(III) almost disappears (less than 8%) and at room temperature it is below a threshold of detection.

Magnetic susceptibility measurements were done using a SQUID magnetometer (Quantum Design) at B = 0.1 T between T = 2 K and 300 K. Raw susceptibility data were corrected for underlying diamagnetism using the set of Pascal constants: $\chi_{dia} = -18.0 \times 10^{-9}$ m³ mol⁻¹ (SI units). The effective magnetic moment (Fig. 3) shows a gradual decrease from the value of $\mu_{eff} = 14.3 \,\mu_B$ at T = 300 K to $\mu_{eff} = 11.7 \,\mu_B$ at T = 100 K. Below this temperature

Fig. 2 Mössbauer spectra at different temperatures for the heptanuclear $\{\text{Fe}^{II}\text{Fe}^{III}_{6}\}$ complex. From top to bottom: T = 20, 78, 120, 150, 180, 200, and 300 K.

Fig. 3 Magnetic functions for the heptanuclear complex: left—temperature dependence of the effective magnetic moment; right—field dependence of the magnetization (dashed lines are guides for eyes).

the effective magnetic moments stays approximately constant but for T < 30 K it drops down. Six uncoupled Fe(III) centres with the spins s = 5/2 provide a high-temperature limit of $\mu_{\text{eff}}/\mu_{\text{B}} = g[6s(s + 1)]^{1/2} = 14.5$. Assuming 4 HS and 2 LS centres ($x_{\text{HS}} = 0.67$), the theoretical value of $\mu_{\text{eff}} = 12.1 \ \mu_{\text{B}}$ is close to that observed around 100 K. The central Fe(II) coordinated by six cyano ligands stays low-spin (s = 0) and it is magnetically silent. Magnetization taken at 2 K saturates to N > 16 unpaired electrons that probably refer to 3HS+3LS (N = 18).

As the Mössbauer spectra show a coexistence of the lowspin and high-spin Fe(III) centres even at T = 20 K, a more elaborated spin crossover model needs to be developed. In the present case of six magnetoactive Fe(III) centres we are left with seven referential (electronic) states: LLLLLL, LLLLLH (6×), LLLLHH (15×), LLLHHH (20×), LLHHHH (15×), LHHHHH (6×), and HHHHHH separated by six Δ_i differences. While the first reference state (six centres of S = 1/2) involves $2^6 = 64$ magnetic energy levels, the last one (six centres of S = 5/2) involves $6^6 =$ 46656 magnetic energy levels. Therefore the partition function not only contains a tremendous number (69952) of different terms, but also a large number of parameters (Δ_i , g_i , and J_i)

$$Z(B_k) = \sum_{N=0}^{6} {\binom{6}{N}} \cdot \sum_{i=1}^{(2^{6-N} \cdot 6^N)} \exp[-(\Delta_0 + \dots + \Delta_N + \varepsilon_{[L^{6-N} H^N]_{i,k}})/kT]$$

The detected observables (magnetization, magnetic susceptibility, high-spin mole fraction, heat capacity) will involve all these parameters. It is not a realistic target to fix these parameters reliably using the data which are presently available. The estimate that at T = 78 K the complex under study contains *ca* 58% of the high-spin Fe(III) fraction could result from a manifold occupation of the reference states (LLLLLL, LLLLH, LLLLHH, LLLHHH, LLHHHH, LHHHHH, and HHHHHH).⁸ This is the raison d'etre why the refinement of the structure cannot reach a better *R*-factor.

Grant agencies (Slovakia: VEGA 1/0213/08, APVV 0006-07, COST-0006-06, VVCE 0004-07; Germany: Leibniz University ZFM; EU: Structural Funds, Interreg IIIA) are acknowledged for the financial support.

Notes and references

‡ *Crystallographic data*: X-ray single-crystal data for **1** were collected at room temperature using Oxford Diffraction Gemini R CCD diffractometer with graphite-monochromated Mo-Kα radiation ($\lambda = 0.7107$ Å). The structure of [Fe^{II}{(CN)Fe^{III}(*salpet*)}₆]Cl₂ was solved and refined by SHELX-97 package.⁵ Chloride anions are disordered in three positions (one is special position). Crystal data for [Fe^{II}{(CN)Fe^{III}(*salpet*)}₆]Cl₂: C₁₂₀H₁₂₆Cl₂Fe₇N₂₄O₁₂, monoclinic $P\overline{1}$, a = 14.443(3), b = 14.480(3), c = 14.842(3) Å, $\alpha = 105.15(3)$, $\beta = 105.21(3)$, $\gamma = 92.04(3)^{\circ}$, V =2873.0(10) Å³, Z = 1, $D_c = 1.479$ g cm⁻³, $\mu = 0.978$ mm⁻¹, F(000) =1326, T = 293(2) K, $2\theta_{max} = 26.4^{\circ}$ (-18 $\leq h \leq 17$,-18 $\leq k \leq 18$,-16 $\leq l \leq$ 18). Final results (for 692 parameters and 277 restraints) were $R_1 = 0.1153$ and $wR_2 = 0.3098$ for 4122 reflections with $I > 2\sigma(I)$, and $R_1 = 0.2325$, $wR_2 = 0.3482$ and S = 1.033 for all 11646 reflections. Reference number is CCDC 633798.

- H. A. Goodwin, Coord. Chem. Rev., 1976, 18, 293; P. Gütlich, Struct. Bonding, 1981, 44, 83; E. König, Struct. Bonding, 1991, 76, 51; P. Gütlich, A. Hauser and H. Spiering, Angew. Chem., 1994, 106, 2109; O. Kahn, Molecular Magnetism, VCH Publishers, New York, 1993; P. Gütlich, Y. Garcia and H. A. Goodwin, Chem. Soc. Rev., 2000, 29, 419; A. Hauser, J. Jeftic, H. Romstedt, R. Hinek and H. Spering, Coord. Chem. Rev., 1999, 190–192, 471; P. Gütlich and H. A. Goodwin, (ed.), Spin crossover in transition metal compounds, Vol. I, II, III, in Topics in Current Chemistry, Vol. 233-235, Springer, Berlin, 2004.
- 2 J. A. Real, J. Zarembowitch, O. Kahn and X. Solans, Inorg. Chem., 1987, 26, 2939; J. A. Real, H. Bolvin, A. Bousseksou, A. Dworkin, O. Kahn, F. Varret and J. Zarembowitch, J. Am. Chem. Soc., 1992, 114, 4650; J. A. Real, I. Castro, A. Bousseksou, M. Verdaguer, R. Burriel, M. Castro, J. Linares and F. Varret, Inorg. Chem., 1997, 36, 455; S. Brooker, P. G. Plieger, B. Moubaraki and K. S. Murray, Angew. Chem., Int. Ed., 1999, 38, 408; V. Ksenofontov, A. B. Gaspar, J. A. Real and P. Gütlich, J. Phys. Chem. B, 2001, 105, 12266; V. Ksenofontov, H. Spiering, S. Reiman, Y. Garcia, A. B. Gaspar, N. Moliner, J. A. Real and P. Gütlich, Chem. Phys. Lett., 2001, 348, 381; A. B. Gaspar, V. Ksenofontov, M. Seredyuk and P. Gütlich, Coord. Chem. Rev., 2005, 249, 2661; A. B. Gaspar, M. C. Munoz and J. A. Real, J. Mater. Chem., 2006, 16, 2522; N. Suemura, M. Ohama and S. Kaizaki, Chem. Commun., 2001, 1538; B. A. Leita, B. Moubaraki, K. S. Murray, J. P. Smith and J. D. Cashion, Chem. Commun., 2004, 156; I. Šalitroš, R. Boča, L. Dlháň, M. Gembický, J. Kožíšek, J. Linares, J. Moncol, I. Nemec, L. Perašínová, F. Renz, I. Svoboda and H. Fuess, Eur. J. Inorg. Chem., 2009, 3141; I. Nemec, R. Boča, R. Herchel, Z. Trávníček, M. Gembický and W. Linert, Monatsh. Chem., 2009, 140, 815.
- R. Herchel, R. Boča, M. Gembický, J. Kožíšek and F. Renz, Inorg. Chem., 2004, 43, 4103; E. Breuning, M. Ruben, J.-M. Lehn, F. Renz, Y. Garcia, V. Ksenofontov, P. Gütlich, E. Wegelius and K. Rissanen, Angew. Chem., Int. Ed., 2000, 39, 2504; F. Renz and P. Kerep, Polyhedron, 2005, 24, 2849; F. Renz, D. Hill, M. Klein and J. Hefner, Polyhedron, 2007, 26, 2325; F. Renz, V. Martinez, M. Klein, M. Schott, T. Hoffmann, M. Blumers, I. Fleischer, G. Klingelhöfer, R. Boča and M. Menzel, Hyperfine Interact., 2008, 184, 259.
- 4 The low C- and N-content found is ascribed to the formation of stable carbides and nitrides when cyanides burn in a commercial C–H– N analyzer (FlashEA 1112, ThermoFinnigan). The resulting material exhibits identical electron/IR spectra independent of whether Fe(II)- or Fe(III)-hexacyanide has been used in synthesis.
- 5 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112.
- 6 G. Rogez, S. Parsons, C. Paulsen, V. Villar and T. Mallah, *Inorg. Chem.*, 2001, 40, 3836; G. Rogez, A. Marvilliers, E. Riviere, J.-P. Audiera, F. Lloret, F. Varret, A. Goujon, N. Mendenez, J.-J. Girerd and T. Mallah, *Angew. Chem.*, *Int. Ed.*, 2000, 39, 2885.
- R. J. Parker, L. Spiccia, K. J. Berry, G. D. Fallon, B. Moubaraki and K. S. Murray, *Chem. Commun.*, 2001, 333; R. J. Parker, L. Spicia, B. Moubaraki, K. S. Murray, D. C. R. Hockless, D. A. Rae and A. C. Willis, *Inorg. Chem.*, 2002, 41, 2489; R. J. Parker, L. Spiccia, S. R. Batten, J. D. Cashion and G. D. Fallon, *Inorg. Chem.*, 2001, 40, 4696; J. P. Lopez, F. W. Heinemann and A. Grohmann, *Z. Anorg. Allg. Chem.*, 2003, 629, 2449; V. Marvaud, C. Decroix, A. Scuiller, C. Guyard-Duhayon, J. Vaissermann, F. Gonnet and M. Vergauer, *Chem.-Eur. J.*, 2003, 9, 1677; T. E. Vos, Yi Liao, W. Shum, Jae-Hyuk Her, P. W. Stephens, W. M. Reiff and J. S. Miller, *J. Am. Chem. Soc.*, 2007, 129, 250; T. Glaser, M. Heidemeier, T. Weyhermuller, R.-D. Hoffmann, H. Rupp and P. Muller, *Angew. Chem.*, *Int. Ed.*, 2006, 45, 6033.
- 8 Averaged Fe–N (Fe–O) distances in the heptanuclear complex at room temperature are shorter than those in the mononuclear high-spin complex: 2.119 (1.927) versus 2.147 (1.943) Å.