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Preparation of 2-oxazolidinones by enzymatic desymmetrisation
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Abstract—Desymmetrisation of achiral N-Boc-serinol was achieved through enzymatic acetylation. Further transformation
provided oxazolidinones with >98% enantiomeric excess. © 2002 Elsevier Science Ltd. All rights reserved.

Previous work within this research group has investi-
gated enzymatic routes for the resolution of chiral
auxiliaries.1 In addition, we have also developed an
unusual approach to the use of racemic chiral auxil-
iaries in Evans’-type aldol reactions with subsequent
enzymatic resolution leading to enantiomerically
enriched recovered auxiliaries and aldol adducts.2

Herein, we wish to report an enzymatic desymmetrisa-
tion strategy, which has been successfully applied to the
preparation of enantiomerically enriched oxazolidi-
nones.

Desymmetrisation of achiral diols using enzymes is a
well known process for the formation of enantiomeri-
cally enriched mono-esters.3 The advantage of desym-
metrisation over conventional kinetic resolution
reactions being the potential ability to achieve high
enantiomeric excess even at 100% conversion.4 Serinol
derivatives have received only limited attention in
desymmetrisation reactions.5 A derivative of serinol
possessing an enantiomerically pure �-methyl benzyl
group on the nitrogen has been used in a chemical/aux-
iliary based diastereoselective synthesis of oxazolidi-
nones on treatment with chloroformate with up to 92%
d.e. (62% yield).6 Racemisation, during oxazolidinone
formation of a mono-silyl ether of N-Boc-serinol, has

been reported previously and a 1,3-silyl shift was sug-
gested in this case as a likely cause of racemisation.7

Our overall desymmetrisation strategy involves the use
of N-Boc-protected serinol 1 to give a monoacetate 2,
followed by appropriate chemical transformation to
afford enantiomerically enriched oxazolidinones (e.g.
compound 3) (Scheme 1).

Boc-protection of achiral serinol (1,3-dihydroxy-2-
aminopropane) was achieved in 90% yield by treatment
of serinol with Boc anhydride in ethanol at 20°C for 1
h.8 The desymmetrisation of N-Boc-serinol was
achieved by selective monoacetylation using PPL
(Porcine pancreatic lipase) and vinyl acetate as
acylating agent, in organic solvent at 25°C (Scheme 2).9

A small amount of diacetylated material was also
observed, providing a self-correcting process10 for the
removal of the unwanted enantiomer of monoacetyl-

Scheme 2. Desymmetrisation of N-Boc-serinol by PPL.

Scheme 1. General approach to preparation of oxazolidinones by enzymatic desymmetrisation.
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Table 1. Influence of solvent on conversion, e.e. and mono-/diacetylated product ratioa,b

Solvent Time (h)Entry Conversion (%) E.e. (%) Mono-/diacetylated

THF/hexane 1:11 2 96 �99 87
iPr2O 222 87 �99 93

3 Vinyl acetate 2 �99 �99 �99

a 140 mgenzyme/mmolsubstrate in solvent (5 mL) using N-Boc-serinol (1 mmol) and vinyl acetate (3 mmol); PPL was Porcine pancreas lipase (EC
3.1.1.3.) Type II, from Sigma®; CAL B was Chirazyme® L-2, carrier-fixed, Carrier 3, lyophilizate from Boehringer Mannheim.

b Conversion, enantiomeric excess and mono-/diacetylated ratio were determined by HPLC analysis (see text).

the oxazolidinone 3 although this product was obtained
as a racemic mixture.11 We assume that intramolecular
acetyl transfer occurs prior to the cyclisation, thereby
affording the racemic product. Nevertheless, oxazolidi-
none 312 was obtained with >98% e.e. on cyclisation
with thionyl chloride (Scheme 3).13

The absolute stereochemistry of oxazolidinone 3 was
confirmed by enzymatic hydrolysis of the acetate group
and comparison of the specific rotation with the litera-
ture value.14 The 4-hydroxymethyl-2-oxazolidonone 4
has previously been converted into a range of 4-substi-
tuted oxazolidinones including the 4-benzyl and 4-ethyl
derivatives (Scheme 4).14

6 alternative approach, the enantiomerically enriched
mono-acetate 2 was benzylated using benzyl
trichloroacetimidate in reasonable yield,15 followed by
cyclisation to provide the oxazolidinone 6 (Scheme 5).16

In summary, we have developed an efficient enzymatic
desymmetrisation of N-Boc-serinol and exploited this
to prepare enantiomerically enriched 4-substituted 2-
oxazolidinones.
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ated product. Only one enantiomer of the monoacetyl-
ated product was detected by chiral HPLC (Chiralcel®

OD column, hexane/iso-propanol 95:5, 1 mL min−1,
�=210 nm).

The choice of solvent was found to influence the enzy-
matic reaction, and solvent effects are illustrated in
Table 1.
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hexane was used as solvent, whilst the reaction took 22
h to reach completion in iPr2O.
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Scheme 5. Synthesis of enantiomerically enriched 4-benzyloxymethyl-2-oxazolidinone.
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