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C-glycosides are an important class of bioactive compounds
most notable for their resistance to metabolic processing and
their prevalence in natural products.[1–3] Perhaps the most
identifiable methodology for their synthesis is the Bu3SnH-
mediated radical addition of glycosyl bromides to activated
alkenes.[4] Since its discovery, several variations of this
reaction have been reported, including the utilization of
transition metals[5] or UV light[6] to initiate the reaction. Our
group recently developed a nickel-catalyzed reductive cou-
pling of glycosyl bromides and alkenes, mechanistic studies on
which suggested that the nickel catalyst was playing an
electron-transfer (ET) role,[7] which implied that other com-
pounds that are known to facilitate ET processes might
behave even better (for example, [Ru(bpy)3]

2+; bpy = 2,2’-
bipyridyl).

The photoredox properties of [Ru(bpy)3]
2+ and visible

light has generated recent excitement as an environmentally
benign method of promoting odd-electron organic reactions
to drive complex bond constructions.[8] The initiating event in
these reactions is the reduction of the photogenerated MLCT
state, *[RuIII(bpy)2(bpyC�)]2+, by amine to generate a potent
ligand centered reducing equivalent (herein referred to as
[RuII(bpy)3]

+; Scheme 1). Stephenson recently demonstrated

that electrophilic radicals could be generated in this fashion
and intramolecularly trapped in a cascade process.[8] We
report herein that the combination of visible light and
[Ru(bpy)3]

2+ yields nucleophilic C1 sugar radicals[9] that
react intermolecularly with electron-deficient alkenes to
provide C-glycosides in yields approaching or exceeding
previous bests and with outstanding C1 diastereoselectivites.

Guided by our previous nickel-based methodology,[7] we
initiated our investigation on the reaction of a-glucosyl
bromide 1 and methyl acrylate with [Ru(bpy)3]X2

(5 mol%), a stoichiometric reductant, and an acid source to
protonate a presumed enolate.[10] The best reductant proved
to be N,N-diisopropylethylamine (3), as it provided promising
yields of the a-C-glycoside (2) and did not require highly
polar solvents (Table 1, entries 2 and 7).[3–5]

In these trials, the mass balance was dominated by over-
conjugate addition (4), indicating that a-radical reduction and
its subsequent conjugate addition to additional acrylate were
competitive. Stimulated by Stephenson�s success with HC

trapping of benzylic radicals, we found that Hantzsch ester (5)

Scheme 1. Formation of alkyl radicals mediated by visible light.
R = alkyl, bpy = 2,2’-bipyridyl.

Table 1: Optimization of C-glycoside formation.

Entry[a] Acid Additive Solvent X Yield[a]

1 3·HBr – DMA Cl 0
2 3·HBr – MeCN Cl 26[b]

3 3·HBF4 – MeCN Cl 44[b]

4 3·HBF4 – MeCN[c] Cl 50[b]

5 3·HBF4 – MeCN[c] BF4 61[b]

6 3·HBF4 5 MeCN[c] BF4 72[b]

7 3·HBF4 5 CH2Cl2
[c] BF4 80[d]

8 – 5 CH2Cl2 BF4 92[d]

[a] DMA= N,N-dimethyl acetamide. Conditions: glucosyl bromide
(0.12 mmol, 0.12 mm in solvent), methyl acrylate (0.24 mmol), reduc-
tant (0.36 mmol), [Ru(bpy)3]X2 (0.06 mmol), 5 (0.24 mmol) at room
temperature with overnight irradiation with a 14W fluorescent bulb.
[b] Yield of isolated product. [c] 0.06m. [d] Yield determined by super-
critical fluid chromatography.
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successfully suppressed the oligomerization and led to
improved yields, as did a switch to dichloromethane as
solvent (suppressed hydrolysis). Final optimization showed
the acid to be unnecessary and high reaction concentrations to
be beneficial (Table 1, entry 8).[11]

The conditions arrived at in entry 8 were adopted to
examine the scope of the coupling (Table 2). In general,
alkenes known to rapidly react with alkyl radicals worked

well,[12] though when they became too electron deficient,
over-conjugate addition became problematic. Typical reac-
tion times were about 15 h, though less electrophilic or
bulkier substrates were slower. Higher alkene concentrations
were helpful when over-conjugate addition was not rapid
(Table 2, entry 6).[13] Mannosyl and galactosyl bromides were
also well-behaved (entries 9 and 10), as were acetate and
benzoate protecting groups (not pivaloate), and reactions
could be successfully scaled to 1.2 mmol of substrate without
complications (entry 1 and 6).[14] Although 1,1-disubstituted
alkenes were tolerated, b-substituted enoates were not (e.g.
methyl crotonate, methyl maleate).

Several control experiments helped to elucidate the role
of the reaction components: 1) No products were formed in
the absence of [Ru(bpy)3]

2+ or visible light, and when 3 was

omitted, 5 was quickly converted into the pyridine (< 2 h)
accompanied by only a 25% consumption of 1 to 2 ; 2) In the
presence of an electrophilic hydrogen atom source (tBuSH),
C1 reductive debromination was the major product accom-
panied by small amounts of the C-glycoside; 3) Consistent
with a C1 radical intermediate was the cyclopropane ring-
opening observed in 16 [Eq. (1)] and the detection of carbon-
based radicals in time-resolved EPR measurements after
pulsed irradiation of the reaction mixture.[9, 15]

Based on these observations, we propose Scheme 2 as a
plausible mechanism. ET from photogenerated [RuII(bpy)3]

+

to glycosyl bromide generates the C1 radical, which can be

reduced (k1) or added to the alkene (k2); for electron deficient
alkenes k2>k1. When k1� k2, reductive debromination is
competitive, though this can be partially compensated with an
increase in the alkene concentration. Termination of the
electron-deficient a radical is subject to the relative rates of
over-conjugate addition (k3) and reduction (k4), the latter
being accelerated by Hantzsch ester.[16,17]

In summary, we have developed a reductive room-
temperature visible-light-mediated conjugate addition of
glycosyl halides into activated alkenes, which leads to fully
saturated C-glycosides with exclusive a selectivity. The pro-
cedure improves upon the classic Bu3Sn-H mediated method-
ologies pioneered by Giese and achieves near best results for
each substrate class. Moreover, this procedure advances the
growing role of photoredox catalysis in important C�C bond
formations and generates an experimentally optimal proce-

Table 2: Scope of the C-alkylation with activated alkenes.[a]

Entry Product Entry Yield[b]

1
6, R = CO2Me: 94%[c]

(75%[d])
2 7, R = COMe: 86%
3 8, R = CHO: 85%
4 9, R = CN: 85%

5 6

10, 98%,
d.r. = 1.5:1

11, 42% (63%[e])

7 8

12, 51% 13, 98% (90%[d]),
d.r. =1.8:1

9 10

14, 81%[c] 15, 80%

[a] R’= Ac or Bz. [b] Yield of isolated product; conditions: glycosyl
bromide (0.12 mmol, 0.12 mm in CH2Cl2), alkene (0.24 mmol), 3
(0.36 mmol), [Ru(bpy)3](BF4)2 (0.06 mmol), 5 (0.24 mmol), irradiation
overnight at room temperature with a 14 W fluorescent bulb.
[c] 0.134 mmol 5. [d] 1.2 mmol glucosyl bromide. [e] 1.2 mmol alkene. Scheme 2. A plausible mechanism for the reactions described herein.
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dure that reduces the amount of toxic byproducts (that is, tin-
free). Efforts to observe and characterize the photogenerated
radical intermediates by trapping or EPR measurements are
underway.

Experimental Section
General procedure: A flame-dried Schlenk tube equipped with a stir
bar under argon was charged with [Ru(bpy)3](BF4)2 (0.006 mmol,
5 mol%), Hantzsch ester 5 (0.268 mmol, 2.2 equiv), and glycosyl
bromide (0.122 mmol, 1 equiv). The flask was evacuated and then
backfilled with argon. Solvent (to a sugar concentration of 0.12 mm)
was added, forming a bright orange heterogeneous solution, followed
by iPr2NEt (0.366 mmol, 3 equiv) and alkene (0.244 mmol, 2 equiv).
The reaction tube was placed 6–10 cm from a 14 W fluorescent light
bulb and stirred at room temperature until thin-layer chromatogra-
phy showed consumption of starting material (12–72 h). The reaction
was quenched by passing it through a plug of silica in Et2O (100 mL).
Flash column chromatography provided the product as a white solid
or a colorless oil after removal of solvents.
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