Accepted Manuscript

The first chemical synthesis of pyrazofurin 5'-triphosphate

Hua-Shan Huang, Rui Wang, Wei-Jie Chen, Ji-Zong Chen, Shan-Shan Gong, Qi Sun

PII:	\$0040-4039(18)30973-0
DOI:	https://doi.org/10.1016/j.tetlet.2018.08.008
Reference:	TETL 50183
To appear in:	Tetrahedron Letters
Developed Deter	21 Lana 2019
Received Date:	21 June 2018
Revised Date:	27 July 2018
Accepted Date:	2 August 2018

Please cite this article as: Huang, H-S., Wang, R., Chen, W-J., Chen, J-Z., Gong, S-S., Sun, Q., The first chemical synthesis of pyrazofurin 5'-triphosphate, *Tetrahedron Letters* (2018), doi: https://doi.org/10.1016/j.tetlet. 2018.08.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Tetrahedron Letters journal homepage: www.elsevier.com

The first chemical synthesis of pyrazofurin 5'-triphosphate

Hua-Shan Huang, Rui Wang, Wei-Jie Chen, Ji-Zong Chen, Shan-Shan Gong* and Qi Sun*

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, 605 Fenglin Avenue, Nanchang, 330013, China

ARTICLE INFO * Corresponding author. Tel.: +86-791-8380-5183; fax: +86-791-8382-6894; e-mail: gongshanshan@jxstnu.edu.cn; sunqi@jxstnu.edu.cn.

Article history: Received Received in revised form Accepted Available online

Keywords: Pyrazofurin triphosphate phosphorylation P(V)-N activation As an archetype *C*-nucleoside, pyrazofurin possesses broad-spectrum antiviral and antitumor activities. However, the presence of the acidic enol in the nucleobase of pyrazofurin poses a huge challenge to the conventional NTP synthetic methods. On the basis of a selective phosphoylation method and the P(V)-N activation strategy, the first chemical synthesis of pyrazofurin 5'-triphosphate (PTP) was accomplished, which will greatly facilitate the investigation on the interactions of viral RNA polymerases and PTP, an important cellular metabolite of pyrazofurin.

2009 Elsevier Ltd. All rights reserved.

Pyrazofurin, a naturally occurring *C*-nucleoside first isolated from the fermentation of a strain of *Streptomyces candidus* in 1969,¹ is a close structural analog of a natural imidazole nucleoside, bredinin,² and a synthetic triazole nucleoside drug, ribavirin (Figure 1).³ As a microbial metabolite, pyrazofurin possesses broad-spectrum antiviral activities against both RNA and DNA viruses⁴ and antitumor properties.⁵

In cellular metabolism, both pyrazofurin and ribavirin are converted to their monophosphates and triphosphates.⁶⁻⁷ Early research on the mechanism of action of the two antiviral agents showed that pyrazofurin 5'-monophosphate (PMP) and ribavirin 5'-monophosphate (RMP) inhibit the orotidine 5'-monophosphate (OMP) decarboxylase⁸ and inosine 5'-monophosphate (IMP) dehydrogenase,9 respectively, and thus block the de novo pyrimidine and purine biosynthesis. In 2000, with the assistance of synthetic ribavirin 5'-triphosphate (RTP), Cameron and his coworker were able to investigate the interactions of RTP with viral RNA polymerases on the basis of a novel primer-extension assay and found that non-specific incorporation of ribavirin into viral genome leads to lethal mutagenesis of virus population.¹⁰⁻¹² Similarly, in the mechanistic investigation of T-705, a pyrazine nucleoside drug (favipiravir), synthetic T-705 5'-triphosphate (T-705TP) helped Furuta and coworkers reveal that the drug's antiviral activity comes from the inhibition of influenza virus RNA polymerase by T-705TP.¹³ In contrast, due to the unique enol-containing nucleobase in pyrazofurin, the chemical

synthesis of pyrazofurin 5'-triphosphate (PTP) has always been an unsolved problem for phosphorus chemists. But it can be envisioned that the availability of synthetic PTP will help virologists and medicinal chemists elucidate the potential roles of PTP in halting virus replication and develop effective antiviral strategies.

In recent years, our research group reported the P(V)-N activation strategy for the synthesis of nucleoside polyphosphates,14-15 nucleoside diphosphate sugars,16 and dinucleoside polyphosphates.¹⁷ The high coupling efficacy and tolerance of diverse functional groups on nucleobases offer an ideal approach to PTP. We report herein the first chemical synthesis of PTP from the corresponding pyrazofurin 5'monophosphate, which was efficiently prepared from isopropylidene-protected pyrazofurin via selective phosphorylation without enol protection.

Due to the poor commercial availability of pyrazofurin, we first synthesized the isopropylidene-protected pyrazofurin (10) according to a known synthetic route.¹⁸⁻²⁰ The detailed synthetic methods of certain steps were optimized to improve the practicability (Scheme 1). First, D-ribose (1) was treated with catalytic amount of *p*-TsOH in 2,2-dimethoxypropane and acetone. But the yield of 2,3-*O*-isopropylidene-D-ribose (2) was only around 70%.²¹ Instead, the application of 5 mol‰ Hf(OTf)₄ as the catalyst afforded 2 in 93% yield within 30 min.²² Direct tritylation of the 5-OH of 2 with TrCl in refluxing pyridine

ACCEPTED MANUSCRIPT

Scheme I. Optimized Synthesis of isopropynactic protected pyrazoranin (10

was sluggish (45% yield, 24 h).²¹ We found that addition of 4 equiv of DMAP significantly shortened the reaction time to 4 h and increase the yield of **3** to 85%.²³ In the Wittig reaction, **3** and phosphorane 4 were initially refluxed in acetonitrile as described in literature.¹⁸ However, the reaction was extremely slow and Cnucleoside 5 was obtained in only 60% vield after 7 days. When the reaction of 3 and 4 was conducted in benzene,¹⁹ catalytic amount of benzoic acid (5 mol%) resulted in moderate improvement (66% yield, 5 d). Therefore, we gradually increased the amount of benzoic acid from 5 mol% to 50 mol%, and found that 20 mol% acid catalyst resulted in the best outcome (82%) yield, 2 d). The α/β ratio was determined as 1.4:1. Then, the diazotization of 5 with tosyl azide/Et₃N and subsequent cyclization of 6 with NaH in DME were conducted strictly according to literature procedures which afforded the diazo compound 6 and anomeric mixtures of pyrazole 7 and 8 in reproducible yields. 7 and 8 were separated by column chromatography and obtained in 38% and 17% yields, respectively. In order to reduce the risk of potential explosion resulting from the aminolysis of 7 with NH₃/MeOH in a sealed tube at 90-95 °C, concentrated ammonia was used instead in our method. The aminolysis was performed at 80 °C for 12 h and gave the amide 9 in comparable yield. Finally, the trityl was cleaved with 1% TFA in CH₂Cl₂ to afford 10 in 80% yield. Alternatively, treatment of 9 with TFA/H₂O (1:1) at room temperature efficiently yielded equal amounts of pyrazofurin (11) and its epimer, pyrazofurin B (12). This result was in agreement with previous reports that pyrazofurin is prone to epimerize in acidic aqueous solution.^{1,24}

To apply the P(V)-N activation strategy to the synthesis of PTP, efficient preparation of PMP is quite essential. In a previous report, Revankar *et al.* prepared PMP from 4-*O*-benzyl pyrazofurin with POCl₃. While the benzylation/ debenzylation of enol took extra steps, phosphorylation with POCl₃ was lowyielding. In addition, a pressurized hydrogenator was required for debenzylation of the 4-*O*-benzyl ether.²⁵ Though direct phosphorylation of pyrazofurin with POCl₃ has been reported, however, the very low yield and tedious purification procedures prohibited its application in our synthesis.²⁶ Therefore, on the basis of the different reactivity of 5'-OH and enol, we attempted to selectively phosphorylate 5'-OH of **10** without enol protection. A series of P(V) and P(III) reagents were tested. Our first trial with POCl₃ as the phosphorylating reagent yielded the desired isopropylidene-protected PMP in very low yield (<10%), and the contaminated inorganic phosphate was hard to separate. The less reactive dibenzylphosphoryl chloride²⁷ was highly prone to hydrolysis and failed to generated any phosphorylated product in this case.

Then, we switched to more reactive phosphoramidite reagents. It was anticipated that if excess P(III) reagent was used, both 5'-OH and enol should be phosphitylated. However, the phosphite triester on enol should be much less stable than the one at 5'-O position. Therefore, upon *in situ* oxidation with aqueous H_2O_2 , the phosphite triester might be cleaved by hydrolysis to afford 5'-OH selectively phosphorylated product. In our experiments, the hindered di-tert-butyl N,N-diisopropylphosphoramidite²⁸ was not reactive at all. In contrast, excess dibenzyl N,Ndiisopropylphosphoramidite²⁹⁻³⁰ reacted with both 5'-OH and enol as we speculated. In the ³¹P NMR spectrum of the diphosphite intermediate (13), two peaks of equal intensity showed up at 139.4 ppm and 137.5 ppm corresponding to the two phosphite triesters at 5'-O and 4-O positions. After H_2O_2 was added, the major product was isolated in 68% yield and characterized as the 5'-O-dibenzyl phosphate (14), indicating that the phosphite triester on enol was hydrolytically removed upon addition of H2O2. Sequential removal of benzyl esters and isopropylidene afforded the desired PMP (15) in excellent yield (Scheme 2). To our surprise, when the phosphate

Scheme 2. A selective phosphorylation method of 10 for synthesis of PMP (15).

CCEPTED MANUSCRIPT

intermediate was treated with TFA/H2O (1:1) at room temperature, only ~10% of 15 epimerized to α -anomer as seen on ¹H NMR. Further decreasing the deprotection temperature to 0 °C effectively inhibited the epimerization of 15.

In the following research, 15 was converted to the corresponding phosphoropiperidate (16) according to the redox condensation method described in a previous paper¹⁵ (Scheme 3). The treatment of 15 with 2,2'-dithiodi-aniline/PPh3 and piperidine in DMSO afforded 16 smoothly over 6 h. Addition of acetone solution of NaI precipitated 16 as sodium salt. Our attempt to purify 16 with LH-20 size-exclusion chromatography caused partial decomposition. Therefore, 16 was directly transformed into triethyl-ammonium salt form by passing through ion exchange resin and used in the next step without further purification (86% yield, purity >95%).

Scheme 3. The redox condensation method for the synthesis of pyrazofurin 5'phosphoropiperidate (16).

According to the P(V)-N activation method,¹⁴ 16 was treated with 2 equiv of pyrophosphate in the presence of 6 equiv of 4,5dicyanoimidazole (DCI) as the activator. ³¹P NMR tracing of the reaction showed that the coupling of pyrophosphate with 16 proceeded efficiently and was not affected by the enol on the nucleobase (Figure 2). Upon completion, ³¹P NMR spectrum of the precipitated crude triphosphate as sodium salt form (Figure 2 inset) indicated that conversion ratio from 16 to triphosphate 17 was over 90%.

Figure 2. ³¹P NMR tracing of the P(V)-N activation strategy for the synthesis of PTP (17).

The crude product was purified by ion exchange chromatography. Passage through an ion exchange resin (Na⁺ form) and lyopholization afforded the target PTP 17 in 65% yield as a white solid. The HPLC analysis of 17 (for detailed conditions, see SI) determined that the triphosphate prepared by this method was of high purity (>98%). On the high resolution mass spectrum of 17 (ESI-), both the molecular ion peak of 17 and fragment peaks corresponding to pyrazofurin 5'-diphosphate and 5'-monophosphate were observed. It is worth to mention that

upon extended stay in aqueous solution for several days, ~10% epimerized pyrazofurin B 5'-triphosphate was observed by 1H NMR.

Figure 3. HPLC (A) and HRMS (B) analysis of synthetic PTP (17).

In summary, for the first time, pyrazofurin 5'-triphosphate (17) was synthesized via the P(V)-N activation strategy, which exhibited excellent coupling efficacy and tolerance of acidic enol functional group on nucleobase. Moreover, certain procedures for the synthesis of isoproylidene-protected pyrazofurin (10) in the Wittig reaction-based route were optimized and a selective phosphorylation method for the preparation of pyrazofurin 5'monophosphate (15) was also developed. The current research will be useful for virological and medicinal investigations of the role of pyrazofurin 5'-triphosphate (17), an important cellular metabolite of pyrazofurin, for the marked antiviral activity of pyrazofurin, which may be helpful for the discovery of novel antiviral strategies.

Acknowledgments

We thank the National Natural Science Foundation of China (21562021), Natural Science Foundation (20143ACB21014), Fellowship for Young Scientists (2015BCB23009), and Sci & Tech Project from Dept of Education (GJJ160763) of Jiangxi Province, and Innovation fund from JXSTNU (YC2017-X27) for financial support.

References and notes

- 1. Gutowski GE, Sweeney MJ, DeLong DC, et al. Ann N Y Acad Sci. 1975:255:544-551
- 2. Witkowski JT, Robins RK, Sidwell RW, et al. J Med Chem. 1972;15:1150-1154.
- 3. Mizuno K, Tsujino M, Takada M, et al. J Antibiot. 1974;27:775-782.
- 4 De Clercq E. Med Res Rev. 2010;29:611-645.
- 5. De Clercq E. J Med Chem. 2016;59:2301-2311.
- 6. Dix DE, Lehman CP, Jakubowski A, et al. Cancer Res. 1979;39:4485-4490
- 7. Zimmerman TP, Deeprose RD. Biochem Pharmacol. 1978;27:709-716.
- Charette M, Gray MW. IUBMB Life. 2000;49:341-351. 8.
- 9. Muller WE, Maidhot A, taschner H, et al. Biochem Pharmacol. 1977;26:1071-1075.
- Arnold JJ, Cameron CE. J Bio Chem. 2000;275:5329-5336. 10
- Graci JD, Cameron CE. Virology. 2002;298:175-182. 11.
- Crotty S, Cameron CE, Andino R. PNAS. 2001;98:6895-6900. 12
- 13. Furuta Y, Takahashi K, Kuno-Maekawa M, et al. Antimicrob Agents Chemother. 2005;49:981-986.
- 14. Sun Q, Gong SS, Sun J, et al. J Org Chem. 2013;78:8417-8426.
- 15. Sun Q, Gong SS, Sun J, et al. Tetrahedron Lett. 2014;55:2114-2118.

4

ΞΡΤΕΡ

- Tetrahedron
- 16. Sun Q, Li XJ, Sun J, et al. Tetrahedron. 2014;70:294-300. 17. Sun Q, Gong SS, Liu S, et al. Tetrahedron. 2014;70:4500-4506.
- Karagiri N, Takashima K, Haneda T, et al. J Chem Soc Perkin Trans 1. 18. 1984;553–560.
- Herrera FJL, Baelo CU. Carbohydr Res. 1985;143:161-174. 19.
- Chen X, Schneller SW. J Med Chem. 1993;36:3727-3730. 20.
- Fan GT, Pan YS, Lu KC, et al. Tetrahedron. 2005;61:1855-1862. 21.
- 22. Unpublished results.
- 23. Cho JH, Bernard DL, Sidwell RW, et al. J Med Chem. 2006;49:1140-1148
- De Bernardo S, Weigele M. J Org Chem. 1976;41:287-290. 24.
- 25. Petrie III CR, Revankar GR, Dalley NK, et al. J Med Chem. 1986;29:268-278.
- 26. Meza-Avina ME, Wei LH, Liu Y, et al. Bioorg Med Chem. 2010;18:4032-4041.
- Hall RH, Khorana HG. J Am Chem Soc. 1954;76:5056-5060. 27.
- 28. Talukdar A, Morgunova E, Duan JX, et al. Bioorg Med Chem. 2010;18:3518-3534.
- 29. Korboukh I, Hull-Ryde EA, Rittiner JE, et al. J Med Chem. 2012:55:6467-6477:
- 30. Lambrecht MJ, Brichacek M, Barkauskaite E, et al. J Am Chem Soc. 2015;137:3558-3564.

Supplementary Material

Supplementary (experimental data procedures and characterization data) associated with this article can be found at

To create your abstract, type over the instructions in the template box below.

Jock

- Pyrazofurin triphosphate was first synthesized via P(V)-N activation strategy.
- selective phosphorylation method was А developed for pyrazofurin 5'-phosphate.
- Certain synthetic procedures for isoproylideneprotected pyrazofurin were modified.

Graphical Abstract

The first chemical synthesis of pyrazofurin 5'-triphosphate

Leave this area blank for abstract info.

Hua-Shan Huang, Rui Wang, Wei-Jie Chen, Ji-Zong Chen, Shan-Shan Gong and Qi Sun

