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Chemoenzymatic Routes to Polyoxygenated Cyclooctenones Related to the
Eastern Hemisphere of the Macrolactam Tripartilactam
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Abstract: Polyoxygenated cyclooctenones closely related to
the enantiomeric form of the Eastern hemisphere of the
structurally and biogenetically unusual macrolactam triparti-
lactam have been assembled from an enzymatically-derived
and homochiral cis-1,2-dihydrocatechol. Key steps include
the oxidative cleavage of the chlorinated double bond
within a derivative of the starting cis-1,2-dihydrocatechol
and a ring-closing metathesis reaction to establish the re-
quired eight-membered ring.

In 2012 Oh and co-workers reported the isolation of the
tricyclic macrolactam tripartilactam (1) from a Streptomyces
sp. found in the brood ball of the dung beetle Copris tripar-
titus.[1] The structure of this architecturally novel compound,
which incorporates a cyclobutane fused, on its opposing
faces, to both an 8- and an 18-membered ring, was estab-
lished using a combination of spectroscopic techniques, most
notably various 2D NMR spectroscopic methods. Mosher
ester analyses were used to determine the absolute configu-
ration of the stereogenic centers associated with the Eastern
hemisphere while that of the remote methyl-bearing carbon
C24 (located in the Western hemisphere) was identified
through degradation and chemical correlation studies. Al-
though the compound showed no significant antimicrobial
or anticancer properties, it proved to be a moderate inhibi-
tor of Na+/K+ ATPase (IC50 of 16.6 mg mL�1). Intriguingly, it
has been suggested[1] that the macrocyclic and polyunsatura-
ted lactam 2, a thus far undetected species in nature, engag-
es in a transannular [2+2]-photocycloaddition reaction as
the final step in the biogenesis of tripartilactam (1). Some
support for such a proposal follows from earlier observa-
tions[2] that the structurally related macrolactam sceliphro-
lactam (3), of undefined stereochemistry at the associated
sp3-hybridized carbons, has been isolated from another
insect-associated Streptomyces sp.

The unique structural features and seemingly unusual bio-
synthetic origins of natural product 1 have prompted us to
pursue its total synthesis. Two distinct approaches to the
challenging[3] polyoxygenated cyclooctane substructure that
represents the characteristic Eastern hemisphere of triparti-
lactam have now been explored and the outcomes of the rel-
evant studies are reported herein. Each of these approaches
exploited the enzymatically-derived and enantiomerically
pure cis-1,2-dihydrocatechol 4[4] as starting material and
while the reaction sequences used ultimately lead to the op-
tical antipodes of the relevant
substructures, the availability of
compound ent-4[5] means that
the natural enantiomeric forms
of these systems are accessible
by exactly the same means.

In the first approach it was envisaged that an intramolecu-
lar [2+2]-cycloaddition reaction between a terminal allene
and a suitably tethered and carbonyl-conjugated alkene
could deliver an adduct incorporating the target substruc-
ture[6] and wherein the associated cyclobutane ring had been
assembled in near a biomimetic fashion, namely through for-
mation of the C8�C17 and C9�C16 bonds (tripartilactam
numbering). Syntheses of substrates suitable for testing this
strategy are shown in Scheme 1 and began with the treat-
ment of metabolite 4 with N-bromosuccinimide in aqueous
THF. Conversion of the resulting bromotriol into the corre-
sponding acetonide 5 (78% from 4)[7] was achieved using
2,2-dimethoxypropane (2,2-DMP) in the presence of p-tol-
uenesulfonic acid (p-TsOH). Reaction of compound 5 with
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sodium hydride in THF then afforded the previously report-
ed epoxide 6 (86 %).[7] Regioselective reductive cleavage of
compound 6 through hydride addition to the allylic carbon
of the epoxide ring could be achieved using DIBAl-H, thus
providing the crystalline homoallylic alcohol 7 (90 %).[8]

Ozonolysis of the readily derived TBS-ether 8 (98 %) of
compound 7 in the presence of methanol followed by reduc-
tive work-up using triphenylphosphine afforded the w-oxo-
ester 9[8] (86 %) that reacted with ethynylmagnesium bro-
mide at �78 8C to give a 1.4:1 mixture of the epimeric and
chromatographically separable propargylic alcohols 10 and
11 (95 % combined yield). Independent treatment of each of
these compounds with 2-(4-methoxybenzyloxy)-4-methyl-
quinoline[9] in the presence of catalytic quantities of
(+)-camphor-10-sulfonic acid then afforded the correspond-
ing p-methoxybenzyl (PMB) ethers 12 (90 %) and 13
(83 %), respectively. Subjection of each of these products to
the Searles–Crabb� allene-forming protocol[6b, 10] using para-
formaldehyde in the presence of cuprous iodide and diiso-
propylamine then gave the anticipated compounds 14
(78 %) and 15 (86 %), respectively. When treated with N,O-
dimethylhydroxylamine hydrochloride in the presence of
isopropylmagnesium bromide, the allenic esters 14 and 15
gave the corresponding and crystalline Weinreb amides 16
(86 %) and 17 (77 %), respectively.[8] Reaction of the former
amide with vinylmagnesium bromide at �78 8C afforded the
targeted enone 18 (21 %), but the major product of the reac-

tion was the adduct of this with N,O-dimethylhydroxyla-
mine, namely the b-aminoketone 19, which was obtained in
57 % yield. When the epimeric amide 17 was reacted under
the same conditions, but using a modified work-up, the de-
sired vinyl ketone 20 (71%) was obtained as the major
product, although it was accompanied by the related amino-
ketone 21 (14%).[11]

While compounds 18 and 20 bear some resemblance to
the Eastern hemisphere of the putative biogenetic precursor
2 of tripartilactam (1), neither could be engaged in the
hoped-for intramolecular [2+2]-cycloaddition reaction[6] so
as to assemble bicycloACHTUNGTRENNUNG[6.2.0]decane substructures associated
with the title natural product. Various reaction conditions
were explored including those involving thermolysis, photo-
lysis, and metal ions but all to no avail. Despite such out-
comes, the reaction sequence defined above provides ready
access to scaffolds strongly resembling the C8�C18 segment
of compound 2 and in principle, therefore, is capable of
being elaborated to this putative biogenetic precursor to tri-
partilactam (1). Of necessity, any such elaboration will re-
quire, among other things, the stereoselective elimination of
the elements of PMBOH across the C14�C15 positions of
these fragments.

In light of the lack of participation of compounds 18 and
20 in the desired [2+2]-cycloaddition process, alternate
routes to polyoxygenated cyclooctanones resembling the
Eastern hemisphere of the target natural product 1 were

Scheme 1. Synthesis of the allenes 18 and 20. a) NBS, 4:1 v/v THF/water, 0–18 8C, 4 h; b) 2,2-DMP, p-TsOH, 18 8C, 2 h, 78 %, 2 steps; c) NaH, THF, 0 8C,
1 h, 86 %; d) DIBAl-H, Et2O, �78 to 0 8C, 2 h, 90 %; e) TBS-Cl, imidazole, DMF, 18 8C, 2 h, 98%; f) O3, pyridine, 4:1 v/v CH2Cl2/MeOH, �78 8C, 0.5 h
then Ph3P, 18 8C, 1 h, 86 %; g) ethynylmagnesium bromide, Et2O, �78 to �15 8C, 1 h, 95% of a ca. 1.4:1 mixture of 10 and 11; h) 2-(4-methoxy-
benzyloxy)-4-methylquinoline, (+)-camphor-10-sulfonic acid (cat.), CH2Cl2, 40 8C, 16 h, 90% (for 12) and 83 % (for 13); i) paraformaldehyde, CuI,
iPr2NH, dioxane, 100 8C, 24 h, 78% (for 14) and 86 % (for 15); j) HCl·HN ACHTUNGTRENNUNG(OMe)Me, iPrMgCl, THF, �15 8C, 1 h, 86% (for 16) and 77 % (for 17);
k) H2C=CHMgBr, Et2O, �78 8C, 1 h, 21 % (for 18), 57 % (for 19), 71% (for 20) and 14% (for 21).
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pursued. An ultimately successful route to such motifs is
shown in Scheme 2. This employs, as the pivotal step, a ring-
closing metathesis (RCM) reaction[12] to assemble the re-
quired eight-membered ring, thus allowing for the possibility
of introducing the four-membered ring associated with
target 1 through a [2+2]-cycloaddition process that is com-
plementary to the one pursued above (and proposed in the
biogenetic conversion 2!1). Specifically, then, the w-oxo-
ester 9 (readily obtained from compound 4 in six steps as
shown Scheme 1) was subjected to a Wittig olefination reac-
tion, and the resulting unsaturated ester 22 (76 %) was then
converted into the corresponding Weinreb amide 23 (92 %)
under standard conditions. Reaction of the latter compound
with allylmagnesium bromide afforded the rather sensitive
b,g-unsaturated ketone 24,[13] but under carefully controlled
conditions 24 could be engaged in a RCM reaction when
treated with Grubbs� second-generation catalyst,[14] thereby
affording the expected cyclooctenone 25[8] in 78 % yield
(from 23).[15] For the purposes of introducing additional
functionality into the newly formed eight-membered ring,
the alkene was treated with dimethyldioxirane (DMDO),[16]

thus providing, in a completely stereoselective manner, the
epoxide 26[8] (75 %). Treatment of compound 26 with 1,8-
diazabicyclo ACHTUNGTRENNUNG[5.4.0]undec-7-ene (DBU) resulted in a fully re-
giocontrolled cleavage of the epoxide ring and the forma-
tion of the g-hydroxy-a,b-unsaturated-enone 27 a that exists
almost exclusively (as judged by analysis of the derived
spectral data) in the lactol form 27 b (91 %). Reaction of
this material with cinnamoyl chloride in the presence of 4-

(N,N-dimethylamino)pyridine (DMAP) gave a chromato-
graphically separable mixture of acetal 28 (19 %) and enone
29[8] (68%) while analogous acetylation of compound 27
(using acetic anhydride and DMAP) only gave the corre-
sponding enone 30[8] (85 %). Similarly, treatment of com-
pound 27 with phenyl thionochloroformate[17] afforded the
anticipated thiocarbonate 31, albeit in just 35 % yield (over
the two steps from epoxide 26). Two further and potentially
significant reactions of the b,g-unsaturated enone 25 were
its ready methylenation, upon microwave irradiation in the
presence of dichloromethane and triethylamine,[18] to give
the dienone 32 (87 %) and its epimerization to the corre-
sponding trans-ring-fused isomer 33[8] (90%) on exposure to
LiOH in THF/water.

Efforts are now underway to elaborate compounds such
as 25–32, each of which embodies the polyoxygenated cyclo-
octane-containing Eastern hemisphere of ent-tripartilactam
(ent-1), into more advanced precursors to this target. Results
will be reported in due course.
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Scheme 2. Synthesis of the cyclooctanes 25–33. a) Ph3P =CH2, THF, 0 to 18 8C, 2 h, 76 %; b) HCl·HN ACHTUNGTRENNUNG(OMe)Me, iPrMgCl, THF, �15 8C, 1 h, 92 %; c) allyl-
magnesium bromide, THF, �78 8C, 1 h; d) Grubbs� II (cat.), CH2Cl2, 40 8C, 2 h, 78%, 2 steps; e) DMDO, CH2Cl2, 0–18 8C, 16 h, 75%; f) DBU, CH2Cl2,
18 8C, 6 h, 91%; g) cinnamoyl chloride, DMAP, pyridine, CH2Cl2, 40 8C, 48 h, 19 % (for 28) and 68% (for 29); h) Ac2O, DMAP, pyridine, 40 8C, 24 h,
85%, two steps; i) phenyl thionochloroformate, DMAP, pyridine, CH2Cl2, 40 8C, 48 h, 35 %, two steps; j) CH2Cl2, Et3N, microwave irradiation, 100 8C,
4 h, 87 %; k) LiOH, 2:1 v/v MeOH/water, 18 8C, 2 h, 90%.
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