Tetrahedron Letters 50 (2009) 5479-5481

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A convenient and rapid approach for the synthesis of 1-benzyl-3-heterocyclic pyrazoles

Michael P. Curtis, Matthew F. Sammons, David W. Piotrowski*

Pfizer Global Research and Development, Groton/New London Laboratories, Pfizer Inc, Groton, CT 06340, United States

ARTICLE INFO

Article history: Received 2 December 2008 Revised 10 July 2009 Accepted 13 July 2009 Available online 16 July 2009

ABSTRACT

A variety of 1-benzyl-3-heterocyclic pyrazoles were rapidly assembled by a two-step N-benzylation/ Suzuki coupling sequence. A one-pot variation of this sequence is demonstrated. © 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Regiocontrolled access to small, polar heterocycles has become an increasingly important part of a medicinal chemist's repertoire to examine structure–activity relationships (SARs) and adjust physicochemical properties of lead molecules. As part of a medicinal chemistry program, we were interested in rapidly evaluating an *N*-benzyl-3-heterocyclic pyrazole lead compound. Recently, methods to access (het)aryl-substituted imidazoles and pyrazoles via the corresponding boronic acids or esters have been published.^{1,2} Herein, we disclose a method to rapidly prepare 1-benzyl-3-heterocyclic pyrazole analogs (1) derived from commercially available 3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1*H*-pyrazole (**2**) (see Fig. 1).

2. Results and discussion

In order to explore the SAR of a lead 3-(4-pyrimidinyl)pyrazole **1**, we wished to survey a range of N-substituents as well as a range of heterocycles at the 3-position. Initial exploration of the benzyl moiety of **1** while maintaining 4-pyrimidine constant at the 3-position was facilitated by the commercial availability of 1-(pyrimidin-4-yl)ethanone (**3**). Thus, **3** was treated with DMF·DMA in refluxing DMF to provide intermediate **4**.³ Subsequent ring closure with hydrazine hydrate in EtOH at room temperature afforded compound **5** in 75 % yield. Benzylation of **5** was first accomplished using 4-chlorobenzyl bromide and Cs₂CO₃ in DMF. After aqueous work-up and flash chromatography, the reaction yielded two distinct regioisomers (**1a** and **6a**) in roughly 10:1 ratio (Scheme 1). NOESY analysis of the major isolate confirmed benzylation at the N-1 position. A strong correlation between the proton at the 5-po-

sition of the pyrazole ring and the two protons on the phenyl ring ortho to the carbon linker was observed upon irradiation of the methylene protons of the benzyl group.⁴ Similar regioselectivity

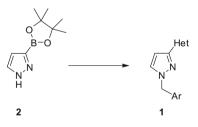
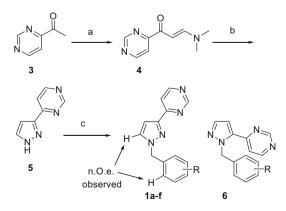



Figure 1. N-Benzyl-3-heterocylic pyrazoles.

Scheme 1. Reagents and conditions: (a) DMF·DMA, DMF, $150 \degree C$ 18 h, 87%; (b) hydrazine hydrate, EtOH, rt 18 h, 75%; (c) R-benzyl bromide Cs_2CO_{3} , MeCN, $80 \degree C$ 2 h.

^{*} Corresponding author. Tel.: +1 860 686 0271; fax: +1 860 686 6627. *E-mail address:* david.w.piotrowski@pfizer.com (D.W. Piotrowski).

^{0040-4039/\$ -} see front matter @ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.07.062

Table 1

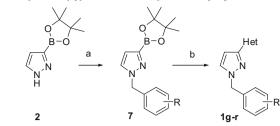
3-(4-Pyrimidinyl)-N-benzylpyrazoles obtained by benzylation of 5.

Compd	R	% Yield
1a	4-Cl	48
	Н	47
1c	3-Cl	41
1d	2-Cl	70
1b 1c 1d 1e	3-CF ₃	43
1f	3-CH ₃	62

was also observed for the benzylation of other analogs. In addition, the chemical shift of the benzylic protons of **1** typically appeared 0.6 ppm upfield when compared to benzylic protons of **6**, and thus served as diagnostic protons for identification of the desired regioisomer.⁵

Simplification of the benzylation procedure by replacement of DMF with acetonitrile allowed for filtration, concentration and purification by chromatography. Using this methodology we were able to rapidly synthesize a variety of substituted benzyl analogs in moderate to good yields (Table 1, compounds **1a–f**).

A facile, parallel-enabled approach to altering the pyrazole 3substituent that did not rely on the three-step method depicted in Scheme 1 was sought. However, few methods to make 3-heterocyclic pyrazoles are amenable to parallel synthesis.⁶ Thus, benzylation of 2 followed by Suzuki cross-coupling would allow for rapid generation of 3-heterocyclic pyrazole analogs. Early attempts to effect N-benzylation of 2 provided less than 10% of desired product 7 (R = H) after aqueous work-up and chromatography. Although these results were discouraging, we believed the reaction was progressing, and that the boronate-ester group of the pyrazole was undergoing protodeboronation⁷ or hydrolysis during aqueous work-up and/or silica gel purification. To better understand the fate of boronate 7. the crude reaction mixture was filtered. concentrated and subjected to LC-MS. GC-MS. and NMR analysis. Reverse phase LC–MS showed only the boronic acid hydrolysis product of 7. However, GC-MS and NMR analysis confirmed complete conversion of 2 into 7, ca. 8 % of the undesired regioisomer and a trace of protodeboronated product. To avoid this decomposition, the crude reaction products 7 were used directly in the Suzuki crosscoupling.


To our satisfaction, Suzuki reaction of crude **7** with 5-fluoro-2chloropyrimidine gave the desired product **1g** in 22 % yield over two steps. Although this yield was less than optimal, higher yields were achieved with more activated heterocycles. Most importantly, we now had a method to readily access heterocycles at the 3-position of the pyrazole core. This process was further optimized by preparing intermediate **7** on scale and using the crude boronate ester for a series of Suzuki reactions. With this in place, a number of 3-heterocyclic pyrazole analogs were synthesized in parallel (Table 2, compounds **1g–r**).

We believed that this pyrazole benzylation/Suzuki coupling approach to compounds **1** could be simplified even further if both steps were carried out in a one-pot reaction sequence. Indeed, it was found that compounds **1** could be prepared directly from **2** in one pot through initial benzylation of **1** in the presence of excess Cs_2CO_3 followed by addition of 5 mol % Pd(PPh₃)₄ and aryl halide (Table 3).

In conclusion, we have described a rapid and convenient method to prepare 1-benzyl-3-heterocyclic pyrazole analogs (1) derived from commercially available 3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-pyrazole (2). This two-step sequence is amenable to a one-pot synthesis, allowing for variation of substituentsat two positions of the pyrazole and rapid examination of the seriesSAR.

Table 2


3-Heteroaryl-N-benzylpyrazoles obtained by Suzuki coupling of crude 7

Compd	Het	R	Х	% Yield
1g	N V V V	Н	Cl	22
1h	2-Pyrimidinyl	3-CF ₃	Br	28
1i	N 2 2 N O	3-CF ₃	Cl	44
1j	N S K N K	3-CF ₃	Cl	43
1k	- ZE N CH3	3-CF ₃	Cl	51
11	2-Pyridazinyl	3-CF ₃	Cl	41
1m	phenyl	3-CF ₃	Br	48
1n	.₹	3-CF ₃	Br	50
10	N Z S	3-CF ₃	Cl	51
1p	N 32 O	3-CF₃	Br	20
1q	2-Thiazolyl	3-CF ₃	Br	22
1r	2-Furyl	3-CF ₃	Br	35

Conditions: (a) R-benzyl bromide, Cs_2CO_3 , MeCN, 80 °C 2 h; (b) Het-X, Pd(PPh_3)_4 Na_2CO_3, iPrOH/toluene/H₂O, 80 °C 18 h.

Table 3 3-Heteroaryl-N-benzylpyrazoles obtained by one-pot alkylation/Suzuki coupling of boronate ester 2

Compd	Het	R	% Yield
1a	4-Pyrimidinyl	4-Cl	47
1c	4-Pyrimidinyl	3-Cl	43
1d	4-Pyrimidinyl	2-Cl	49
1s	2-Pyridinyl	4-Cl	36
1t	2-Pyridinyl	2-Cl	27

Conditions: (a) (i) R-benzyl bromide, Cs_2CO_3 (3 equiv), MeCN, 80 $^\circ$ C 2 h; (ii) heterocyclic-Cl, Pd(PPh_3)_4 , H_2O, 80 $^\circ$ C 18 h.

3. Experimental

3.1. Typical experimental procedure for preparation and Suzuki coupling of 7

To a solution of 3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2yl)-1H-pyrazole(1.0 g, 5.1 mmol) in acetonitrile(35 mL) were added 3-(trifluoromethyl)benzyl bromide (1.23 g, 5.2 mmol) and cesium carbonate (2.5 g, 7.7 mmol). The reaction mixture was heated at 80 °C for 2 h. The reaction mixture was cooled, filtered, and concentrated to provide 7 as a yellow solid. To a solution of crude 7 (125 mg, 0.36 mmol) in toluene/iPrOH/water (7 mL) were added 2-chlorobenzothiazole (61 mg, 0.36 mmol), Pd(PPh₃)₄ (21 mg, 0.018 mmol), and sodium carbonate (95 mg, 0.9 mmol). The reaction mixture was heated at 80 °C for 18 h. After cooling to room temperature, the mixture was concentrated and purified using flash chromatography, eluting from 10:90 EtOAc/heptane to 50:50 EtOAc/heptane affording **10** (65 mg, 51 %) as a colorless solid. ¹H NMR (CDCl₃, 400 MHz) δ 5.45 (s, 2H), 7.05 (d, J = 2.4 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.42– 7.50 (m, 4H), 7.54 (s, 1H), 7.58, (d, J = 4.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 8.06 (d, J = 8.4, 1H); ¹³C NMR (CDCl₃ 100.51 MHz) δ 56.13, 106.13, 121.89, 123.20, 124.66, 125.51, 126.44, 129.75, 131.23, 131.59, 134.60, 137.04, 147.30, 153.90, 161.97 ppm; m/z (CI) 360 ([M+H]⁺, 100%); Anal. Calcd for C₁₈H₁₂F₃N₃S: C, 60.16; H, 3.37: N. 11.69. Found: C. 59.94: H. 3.04: N. 11.56.

3.2. Typical experimental procedure for the one-pot benzylation/Suzuki coupling of 2

To a suspension of 3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-pyrazole (50 mg, 0.26 mmol) and Cs₂CO₃ (273 mg,

0.77 mmol) in acetonitrile (2 mL) was added 4-chlorobenzyl bromide (53 mg, 0.26 mmol). The reaction mixture was heated at 80 °C for 2 h. Pd(PPh₃)₄ (15 mg, 0.013 mmol), 2-chloropyridine (25 µL, 0.27 mmol), and 50 µL water were added. The reaction mixture was stirred at 80 °C for 18 h. After cooling to room temperature, the mixture was filtered through Celite and concentrated. Purification by flash chromatography eluting with a 0–50% EtOAc in heptane gradient gave **1s** (25 mg, 36%) as a colorless solid. ¹H NMR (CDCl₃, 400 MHz) δ 5.34 (s, 2H) 6.89 (d, *J* = 2.35 Hz, 1H) 7.15–7.21 (m, 3H) 7.27–7.33 (m, 2H) 7.39 (d, *J* = 2.35 Hz, 1H) 7.69 (m, 1H) 7.86–7.96 (m, 1H) 8.58–8.65 (m, 1H); *m/z* (CI) 270 ([M+H]⁺, 100%).

References and notes

- McLaughlin, M.; Marcantonio, K.; Chen, C.; Davies, I. W. J. Org. Chem. 2008, 73, 4309.
- Primas, N.; Mahatsekake, C.; Bouillon, A.; Lancelot, J.-C.; Sopkovà-de Oliveira Santos, J.; Lohier, J.-F.; Rault, S. *Tetrahedron* 2008, 64, 4596.
- Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S.; Sham, H. L. J. Med. Chem. 2002, 45, 1697.
- 4. Price, S.; Bordogna, W.; Bull, R. J.; Clark, D. E.; Crackett, P. H.; Dyke, H. J.; Gill, M.; Harris, N. V.; Gorski, J.; Lloyd, J.; Lockey, P. M.; Mullett, J.; Roach, A. G.; Roussel, F.; White, A. B. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 370.
- 5. The benzylic protons for **1a** = δ 5.37 ppm and **6a** = δ 6.01 ppm; **1b** = 5.40 ppm and **6b** = δ 6.05 ppm; **1e** = δ 5.46 ppm; **1g** = δ 5.45 ppm; **1l** = δ 5.47 ppm.
- (a) Patel, M.; Bacheler, L. T.; Rayner, M. M.; Cordova, B. C.; Klabe, R. M.; Erickson-Viitanen, S.; Seitz, S. P. Bioorg. Med. Chem. Lett. **1998**, 8, 823; (b) Pavlik, W.; Kurzweil, E. M. J. Heterocycl. Chem. **1992**, 29, 1357; (c) Balle, T.; Perregaard, J.; Ramirez, M. T.; Larsen, A. K.; SØby, K. K.; Liljefors, T.; Andersen, K. J. Med. Chem. **2003**, 46, 265.
- (a) Campeau, L.; Fagnou, K. Chem. Soc. Rev. 2007, 36, 1058; (b) Tyrrell, E.; Brookes, P. Synthesis 2003, 469.