

BIOORGANIC & MEDICINAL CHEMISTRY

Bioorganic & Medicinal Chemistry 11 (2003) 2695-2707

Superoxide Dismutase Mimetics. Part 2: Synthesis and Structure–Activity Relationship of Glyoxylate- and Glyoxamide-Derived Metalloporphyrins

Michael P. Trova,^a Polivina Jolicia F. Gauuan,^{a,*} Anthony D. Pechulis,^a Stephen M. Bubb,^a Stephen B. Bocckino,^b James D. Crapo^c and Brian J. Day^c

^aAlbany Molecular Research, Inc., 21 Corporate Circle, PO Box 15098, Albany, NY 12212-5098, USA ^bIncara, Inc., PO Box 14287, Research Triangle Park, NC 27709, USA Lational Jourish Modeal and Research Contar, 7154, Coodman Building, 1400, Jackson Street, Danna, CO 80206, U

^cNational Jewish Medical and Research Center, 715A Goodman Building, 1400 Jackson Street, Denver, CO 80206, USA

Received 14 August 2002; accepted 4 April 2003

Abstract—Novel glyoxylate- and glyoxamide-derived metalloporphyrins 26–58 were synthesized and evaluated as potential superoxide dismutase (SOD) mimetics. Relative to previously studied MnTBAP analogues, the glyoxylate-derived metalloporphyrins 32, 39, and 54 and glyoxamide-derived metalloporphyrin 49, exhibited enhanced activity in the SOD assay and the majority of the analogues in the current series showed enhanced inhibition of lipid peroxidation and catalase activity. © 2003 Elsevier Science Ltd. All rights reserved.

Introduction

Superoxide radicals (O_2^{--}) have been implicated in the pathogenesis of disease processes including inflammation diseases, cancer and neurological disorders.^{1–4} By catalyzing the intra- and extracellular conversion of O_2^{--} to H_2O_2 plus O_2 , superoxide dismutases (SODs) represent the first line of defense against the harmful effects of superoxide radicals that participate in the initiation of lipid peroxidation. Lipid peroxidation is a naturally occurring reaction between polyunsaturated fatty acids and reactive oxygen species. The resulting degradation products, such as small aldehyde fragments, are thought to be associated with a number of disease processes.⁵

Several studies,⁶ including ours, are geared toward the development of metalloporphyrin-based antioxidants with SOD activity. More recently, we reported the study of MnTBAP analogues as SOD mimetics.⁷ The compounds studied were ester and amide analogues of MnTBAP that have molecular masses close to or over 1000 amu. In an effort to improve the physical, pharmacological, and biological properties of our previously reported SOD mimetics,⁷ we set out to design and synthesize metalloporphyrin analogues with significantly

*Corresponding author. Fax: +1-518-464-0289; e-mail: joli@ albmolecular. com

reduced molecular weights. We hypothesized that removal of the bridging phenyl group, by placing the carboxylic acid or carboxylate group directly at the *meso* position of the porphyrin ring, using glyoxylic acid derivatives as precursors, would satisfy these objectives.

To date, glyoxylate esters have been utilized in ene⁸ and cycloaddition⁹ reactions, and as precursors to *N*-aryl iminoesters,¹⁰ enamines,¹¹ bromo(acyloxy)acetate esters,¹² α -hydroxycyanoacetate esters,¹³ and 5,6-dihydro-2*H*-1,3-oxazines.¹⁴ Benzyl and *tert*-butyl glyoxylate have been shown to condense with pyrrole in the presence of ZnCl₂ to provide hydroxyester-substituted pyrroles.¹⁵ Collman and co-workers¹⁶ described the preparation of 5,15-diethylcarboxylate-substituted porphyrins through acetal esters. We report herein the preparation of novel metalloporphyrins **26–58** that were derived from glyoxylic acid derivatives and the results of our biological assays designed to determine their potential as catalytic antioxidants with SOD activity.

Results and Discussion

Chemistry

Methyl (1a) and ethyl (1b) glyoxylate were prepared according to the procedure described by Hook.¹⁷

0968-0896/03/\$ - see front matter \odot 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0968-0896(03)00272-4

Table 1. Glyoxylic acid-derived symmetrical tetra-meso-porphyrin2a-2g

Reactant	Product	R	% Yield
1a	2a	-OCH ₃	6.1
1b	2b	-OCH ₂ CH ₃	6
1c	2c	-OCH ₂ CF ₃	3.4
1d	2d	$-O(CH_2)_2CH_3$	7
1e	2e	$-O(CH_2)_3CH_3$	11
1f	2f	$-O(CH_2)_5CH_3$	15
1g	2g	-N(CH ₃) ₂	1.7

Glyoxylates **1c**–**f** were prepared by oxidative cleavage of the corresponding tartrates¹⁸ with periodic acid dihydrate.¹⁹ The resulting glyoxylate esters **1a**–**f** were immediately subjected to BF₃·OEt₂-catalyzed condensation with pyrrole followed by oxidation with DDQ (Scheme 1) to afford the symmetrical tetra-*meso*-porphyrins **2a**–**f** in 6-15% yield (Table 1). The procedure is also amenable to the preparation of *meso* amide porphyrin analogues: the porphyrin **2g** was isolated from the condensation of pyrrole with glyoxamide **1g**, that was derived from its corresponding tartramide by periodic cleavage.

Having demonstrated the application of glyoxylic acid derivatives 1a-g as porphyrin precursors, we next directed our attention to the reaction of glyoxylic acid derivatives with representative dipyrromethanes. Dipyrromethanes are known precursors to *trans*-substituted porphyrins;²⁰ however, one drawback for utilizing dipyrromethanes in porphyrin synthesis is their propensity to undergo acidolysis under the reaction conditions, resulting in the formation of multiple scrambled *meso*substituted porphyrin products. The trifluoromethylsubstituted dipyrromethane²¹ **3a** was reported to be

Table 2. Reaction of glyoxylic acid derivatives with dipyrromethanes

Scheme 2.

more resistant to scrambling than other known dipyrromethanes. Therefore, the reaction of **3a** with glyoxylate esters (**1a** and **1d**) was attempted first (Scheme 2) to provide only the *trans*-substituted products **4** and **5**, respectively (Table 2). When the reaction of glyoxylate esters with known dipyrromethane **3b**²² was evaluated, the desired *trans* porphyrins (i.e., **6**, **9**, **11**, **13**, and **15**) in addition to acidolysis products (i.e., **7**, **8**, **10**, **12**, **14**, **16**, and **18**) were obtained.

We next investigated the preparation of dipyrromethane **3c** and its utility in porphyrin synthesis. Dipyrromethane

Rea	actants	Product(s)	R^1	\mathbb{R}^2	R ³	% Yield
3a	1a	4	CF ₃	CO ₂ CH ₃	CO ₂ CH ₃	30
3a	1d	5	CF_3	$CO_2(CH_2)_2CH_3$	$CO_2(CH_2)_2CH_3$	3.7
3b	1 a	6	Н	CO_2CH_3	CO_2CH_3	1.4
		7	Н	CO ₂ CH ₃	Н	0.5
		8	Н	Н	Н	Trace
3b	1b	9	Н	$CO_2CH_2CH_3$	$CO_2CH_2CH_3$	7
		10	Н	$CO_2CH_2CH_3$	Н	< 1
		8	Н	Н	Н	0.5
3b	1c	11	Н	$CO_2CH_2CF_3$	$CO_2CH_2CF_3$	1.2
		12	Н	$CO_2CH_2CF_3$	Н	0.7
		8	Н	Н	Н	Trace
3b	1d	13	Н	$CO_2(CH_2)_2CH_3$	$CO_2(CH_2)_2CH_3$	2.9
		14	Н	$CO_2(CH_2)_2CH_3$	Н	1.2
		8	Н	Н	Н	Trace
3b	1e	15	Н	$CO_2(CH_2)_3CH_3$	$CO_2(CH_2)_3CH_3$	7.0
		16	Н	$CO_2(CH_2)_3CH_3$	Н	1.3
3b	1g	17	Н	$C(O)N(CH_3)_2$	$C(O)N(CH_3)_2$	0.9
		18	Н	$C(O)N(CH_3)_2$	Н	0.2
3c	8	19	$CO_2CH_2CH_3$	(3-CO ₂ CH ₃)(4-F)Ph	(3-CO ₂ CH ₃)(4-F)Ph	3.3
		20	$CO_2CH_2CH_3$	(3-CO ₂ CH ₃)(4-F)Ph	$CO_2CH_2CH_3$	5.2
3c	9	21	$CO_2CH_2CH_3$	$(CH_2)_2CH_3$	$(CH_2)_2CH_3$	10
3d	1 a	22	$CO_2(CH_2)_3CH_3$	CO_2CH_3	CO_2CH_3	2.8
		23	$CO_2(CH_2)_3CH_3$	CO_2CH_3	$CO_2(CH_2)_3CH_3$	0.7
3e	1 a	24	$C(O)N(CH_3)_2$	CO_2CH_3	CO_2CH_3	1.7
3e	1b	25	$C(O)N(CH_3)_2$	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	1

b. (i) propionaldehyde, propionic acid, reflux; (ii) DDQ

Scheme 3.

Scheme 4.

3c, obtained from the reaction of ethyl glyoxylate (**1b**) with pyrrole under TFA catalysis, was condenxsed with 3-carbomethoxy-4-fluorobenzaldehyde²³ to provide the desired *trans* porphyrin **19** and acidolysis product **20** (Scheme 3, Table 2). Our desire to prepare a representative porphyrin bearing an alkyl group at the *meso* position led us to attempt the condensation of dipyrromethane **3c** with propionaldehyde, first, under BF₃ catalysis. However, no desired product **21** was isolated. When the condensation was performed in refluxing propionic acid,²⁴ *trans* porphyrin product **21** was successfully isolated. The preceding examples demonstrated the utility of glyoxylate ester-derived dipyrromethanes, such as **3c**, in porphyrin synthesis.

The synthesis of a representative mixed carboxylate porphyrin was realized when methyl glyoxylate (1a) was condensed with dipyrromethane 3d to provide *trans*substituted porphyrin 22 and acidolysis product porphyrin 23 (Scheme 4). To explore the utility of an amide-substituted dipyrromethane as a precursor to

Scheme 5.

porphyrins, we synthesized dipyrromethane 3e then condensed it with methyl and ethyl glyoxylate to provide only the *trans*-substituted products 24 and 25, respectively (Scheme 4, Table 2).²⁵

Isolated porphyrins **4–25** were metalated with $MnCl_2$ in DMF (Scheme 5) to provide metalloporphyrins **26–58** (Table 3). In some cases, byproducts, due to partial hydrolysis and/or decarboxylation during metalation, were isolated. The metalated porphyrin derivatives were then assayed for biological activity.

Biology

Reactive oxygen species (superoxide, hydrogen peroxide, lipid peroxides and hydroxyl radicals) are important mediators of biomacromolecule oxidation, such as proteins, lipids, sugars, and DNA.²⁶ These oxidized macromolecules that are thought to contribute to organ dysfunction and inflammation associated with many common disease states such as stroke,^{3c} cancer^{3d} and diabete.3e The body possesses powerful antioxidant defenses, both enzymatic (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymatic (glutathione, vitamin E, ascorbate, urate), to limit the deleterious actions of reactive oxygen species under normal conditions, but these defenses can be consumed or overwhelmed under pathological states. A number of animal models of human disease can be attenuated by the over-expression of endogenous antioxidant defenses.^{1c,27a,27b} Reactive oxygen species are thus a logical pharmacological target in disease states associated with excessive inflammation and oxidative stress. A number

Reactant	Product	\mathbb{R}^1	\mathbb{R}^2	R ³	% Yield	FAB MS m/z
2a	26	CO ₂ CH ₃	CO ₂ CH ₃	CO ₂ CH ₃	59	595
	27	CO ₂ CH ₃	CO ₂ H	CO ₂ CH ₃	< 5	581
2b	228	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	84	651
	29	CO ₂ CH ₂ CH ₃	CO ₂ H	CO ₂ CH ₂ CH ₃	< 5	623
	30	CO ₂ CH ₂ CH ₃	Н	CO ₂ CH ₂ CH ₃	< 5	579
2c	31	$CO_2CH_2CF_3$	$CO_2CH_2CF_3$	$CO_2CH_2CF_3$	58	867
2d	32	$CO_2(CH_2)_2CH_3$	$CO_2(CH_2)_2CH_3$	$CO_2(CH_2)_2CH_3$	88	707
2e	33	CO ₂ (CH ₂) ₃ CH ₃	$CO_2(CH_2)_3CH_3$	$CO_2(CH_2)_3CH_3$	43	763
	34	CO ₂ (CH ₂) ₃ CH ₃	CO_2H	$CO_2(CH_2)_3CH_3$	2.7	707
2f	35	$CO_2(CH_2)_5CH_3$	$CO_2(CH_2)_5CH_3$	$CO_2(CH_2)_5CH_3$	98	875
2g	36	$C(O)N(CH_3)_2$	$C(O)N(CH_3)_2$	$C(O)N(CH_3)_2$	27	647
4	37	CF_3	CO_2CH_3	CO_2CH_3	88	615
	38	CF_3	CO_2H	CO_2CH_3	12	601
5	39	CF_3	$CO_2(CH_2)_2CH_3$	$CO_2(CH_2)_2CH_3$	87	671
6	40	Н	CO_2CH_3	CO_2CH_3	34	479
7	41	Н	CO_2CH_3	Н	14	421
9	42	Н	CO ₂ CH ₂ CH ₃	CO ₂ CH ₂ CH ₃	19	507
11	43	Н	CO ₂ CH ₂ CF ₃	CO ₂ CH ₂ CF ₃	72	615
12	44	Н	$CO_2CH_2CF_3$	Н	92	489
13	45	Н	$CO_2(CH_2)_2CH_3$	$CO_2(CH_2)_2CH_3$	98	535
14	46	Н	$CO_2(CH_2)_2CH_3$	Н	74	449
15	47	Н	$CO_2(CH_2)_3CH_3$	$CO_2(CH_2)_3CH_3$	43	563
16	48	Н	$CO_2(CH_2)_3CH_3$	Н	44	463
17	49	Н	$C(O)N(CH_3)_2$	$C(O)N(CH_3)_2$	23	505
18	50	Н	$C(O)N(CH_3)_2$	Н	43	434
19	51	CO ₂ CH ₂ CH ₃	(3-CO ₂ CH ₃)(4-F)Ph	(3-CO ₂ CH ₃)(4-F)Ph	73	811
20	52	CO ₂ CH ₂ CH ₃	(3-CO ₂ CH ₃)(4-F)Ph	$CO_2CH_2CH_3$	82	731
21	53	CO ₂ CH ₂ CH ₃	$(CH_2)_2CH_3$	$(CH_2)_2CH_3$	24	563
22	54	CO ₂ (CH ₂) ₃ CH ₃	CO ₂ CH ₃	CO ₂ CH ₃	39	679
	55	CO ₂ (CH ₂) ₃ CH ₃	CO ₂ CH ₃	CO_2H	12	665
23	56	CO ₂ (CH ₂) ₃ CH ₃	CO_2CH_3	$CO_2(CH_2)_3CH_3$	27	721
24	57	CO ₂ CH ₃	$C(O)N(CH_3)_2$	$C(O)N(CH_3)_2$	21	621
25	58	CO ₂ CH ₂ CH ₃	$C(O)N(CH_3)_2$	$C(O)N(CH_3)_2$	29	649

 Table 3.
 Metallation of glyoxylic acid-derived porphyrins

of metal containing antioxidants with SOD activity have been pursued for development with this intent.²⁸

Porphyrin analogues **26–58** were assayed for SOD, catalase and/or peroxidase activity. Superoxide dismutase activity was measured by cytochrome c reductase previously described by McCord and Fridovich.²⁹ Catalase activity was monitored by measuring oxygen evolution with a Clark-type electrode in the presence of 1 mM $H_2O_2^{6d,30}$ and the ability of mimetics to inhibit lipid peroxidation (TBARS, IC₅₀ µM) was assessed as previously described.³¹ Iron and ascorbate were used to initiate lipid peroxidation in tissue homogenates and the formation of thiobarbituric acid reactive species (TBARS) was measured.^{32,33}

The biological activity data are shown in Table 4. Relative to our previously studied MnTBAP analogues,⁷ porphyrin 55 exhibited similar activity and porphyrins 32, 39, 49, and 54 exhibited enhanced activity in the SOD assay. Those porphyrin analogues derived from dipyrromethane 3b and glyoxylate esters 1a–f (i.e., compounds 40–48) generally interfered with the SOD assay, whereas the corresponding analogues derived from the dipyrromethane 3b and glyoxamide 1g (i.e., compounds 49 and 50) exhibited SOD activity.

All the compounds except for compound 35 exhibited enhanced lipid peroxidation activity as indicated by improved IC₅₀ values in the TBARS assay compared to the MnTBAP analogues in our previous studies.⁷ In the current report, the porphyrins bearing two unsubstituted *meso* positions (compounds 40, 43, 45, 47 and 49) showed from 2- to 5-fold enhancement in the TBARS assay relative to the corresponding monosubstituted compounds (41, 44, 46, 48, and 50, respectively).

Many of the porphyrin derivatives in Table 4 exhibited a more significant catalase activity relative to our previously studied MnTBAP analogues. In this series, most of the porphyrins bearing two unsubstituted *meso* position (compounds 40, 43, 45, and 49) showed significant catalase activity relative to their corresponding tetra *meso*-substituted compounds (26, 31, 32 and 36, respectively). There was no significant difference in the catalase activity of the tetra *meso*-substituted compounds (26, 31, 32 and 36) relative to the corresponding monosubstituted compounds (41, 44, 46, and 50, respectively).

Recent studies have shown that an early glycolate analogue, **28** (AEOL-11201), was effective in attenuating an acetic acid-induced colitis in rats.³⁴ Rats were treated with AEOL-11201 (5 mg/kg, ip daily for 5 days) and this regimen significantly decreased the severity of diarrhea and the severity of macroscopic and histological changes in the colon.

 Table 4. In vitro biological activity data for porphyrins 26–58

Product	SOD activity ^a (SOD unit/mg)	TBARS ^b (IC ₅₀ μM)	Catalase ^c (min ⁻¹)
MnTBAP	41 $(n=3)^{d}$	45 ^d	0.81 (n=3)
26	NAe	0.725 (n=2)	0.125(n=2)
27	NA	0.259 ^f	0.62
28	5.62 (n=5)	3.35(n=2)	0.884 (n=5)
29	2.3 (est)	1.3	NA
30	NA	0.1	1.85
31	3.4	15	1.59
32	129.5 (n=2)	6.65 (n=2)	0.4 (n=2)
33	Interferes ^f	8.2	0.93
34	Red cyt c ^g	17	_
35	Red cyt c	306	0.22
36	4.5	30	0.16
37	NA	8.2 (n=2)	0.525 (n=2)
38	4.3 (est)	16	0.62
39	98	4	—
40	Interferes	8.5	0.08
41	Interferes	15	0.22
42	Interferes	9.7	—
43	Interferes	4.7	0.33
44	0.6 (est)	12	0.33
45	Red cyt c	8.4	0.04
46	Interferes	17	0.39
47	Interferes	4.4	0.93
48	Interferes	26	—
49	70.4	15.5	0.12
50	1.7	39	0.17
51	19	1.2	1.56
52	6.5	0.91	0.54
53	Red cyt c	14.7	0.54
54	67.4	7.1	0.17
38b55	41.9 (est)	2.6	Bleached ^h
56	—	8.6	1.09
57	0.7 (est)	2.1	0.06
58	5.6	1.5	—

^aUnits of superoxide dismutase (SOD) activity defined as the amount of compound that inhibits 50% reduction of cytochrome c.

^bThe concentration of compound that inhibits iron/ascorbate-mediated brain homogenate lipid peroxidation by 50%.

^cPseudo first order rate constant for H₂O₂ decay.

^dResults from ref 7.

^eNA, not active.

fInterferes with cytochrome c assay by unknown mechanism.

^gCompound directly reduces cytochrome c.

^hCompound is not stable under assay conditions.

Conclusion

We have shown that glyoxylic esters **1a–f** and glyoxamide **1g** are useful precursors in the synthesis of novel low molecular weight metalloporphyrins **26–58**.

This study also demonstrated that the removal of the bridging phenyl group (i.e., in MnTBAP series⁷) by direct attachment of the carboxylate groups at the porphyrin meso positions resulted in analogues with enhanced activities. Relative to previously studied MnTBAP analogues, four compounds in this series, 5,10,15,20-tetrakis(*n*-butylcarbonyl)-, 5,15-bis(*n*-butylcarbonyl)-10,20bis(trifluoromethyl)-, 5,15-bis(dimethylamido)-, and [5,15-bis(*n*-butoxycarbonyl)-10,20-bis(methoxycarbonyl)porphyrinato]manganese(III) analogues, showed improved activity in the SOD assay. The majority of compounds in this study showed enhanced efficacy in the TBARS assay and showed enhanced catalase activity relative to MnTBAP and other MnTBAP analogues⁷ previously studied. These compounds are now under active investigation for their therapeutic potential in animal models of disease that involved excessive inflammation and oxidative stress.

Experimental

Proton and carbon NMR spectra were obtained on a Bruker AC 300 spectrometer at 300 and 75 MHz, respectively. Proton spectra were referenced to tetramethylsilane as an internal standard, and the carbon spectra were referenced to $CDCl_3$ or $DMSO-d_6$ (purchased from Cambridge Isotope Laboratories). All carbon spectra were proton decoupled. The IR spectrometer used was a single beam Perkin-Elmer Spectrum 1000 FT-IR. All IR spectra obtained were prepared in a pressed disc of KBr. All IR spectra obtained were acquired with a total of four accumulations at a resolution of $4.00 \,\mathrm{cm}^{-1}$. Melting points were obtained on a Mel-Temp II apparatus and are uncorrected. CI Mass spectra were obtained on a Shimadzu QP-5000 Mass Spectrometer and FAB mass spectral analyses were performed by M-Scan of West Chester, PA, USA. Elemental analyses were performed by Quantitative Technologies, Inc. of Whitehouse, NJ, USA. HLPC analyses were obtained using a Microsorb C18 Column with UV detection at 230 nm (unless otherwise specified). HPLC grade methylene chloride and anhydrous DMF and ethyl ether were used.

2,2,2-Trifluoroethyl glyoxylate (1c). *d*-Tartaric acid (25 g, 0.17 mol), 2,2,2-trifluoroethanol (200 mL), and concentrated H_2SO_4 (59 mL) were heated at reflux for 1 day. The solution was cooled to room temperature then partitioned between H_2O and CH_2Cl_2 . The organic layer was washed consecutively with aqueous saturated NaHCO₃, H_2O , and brine, then dried (Na₂SO₄), filtered, and the solvent removed in vacuo. Recrystallization from hexanes/ether provided di-(2,2,2-trifluoroethyl) tartrate (17.3 g, 33%) as white crystals: mp 77–79 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.13 (br s, 2H), 4.59–4.74 (m, 6H); CI MS *m*/*z* 315 [C₈H₁₀F₆O₆+H]⁺.

A solution of di-(2,2,2-trifluoroethyl) tartrate (1 g, 3.2 mmol) in ether (25 mL) was magnetically stirred at 0 °C under N₂ as periodic acid dihydrate (0.72 g, 3.2 mmol) was added in portions (3 × 0.24 g) over the course of 1 h. The solution was stirred for an additional 4 h then decanted from the solid precipitate, dried (Na₂SO₄), filtered, and the solvent removed in vacuo to provide crude **1c** (0.85 g, 86%) which was immediately used without further purification and characterization. The glyoxylic esters and glyoxamide readily polymerized making their characterization difficult. When there was a need for these glyoxylic acid derivatives, they were usually prepared fresh and used immediately and without purification.^{18,19}

n-Propyl glyoxylate (1d). *d*-Tartaric acid (2.56 g, 17.0 mmol), *n*-propanol (30 mL), and concentrated H_2SO_4 (6 mL) were heated at reflux for 3 days. The solution was cooled to room temperature then partitioned between H_2O and CH_2Cl_2 . The organic layer was

washed consecutively with aqueous saturated NaHCO₃, H₂O, and brine, then dried (Na₂SO₄), filtered, and the solvent removed in vacuo to provide crude di-*n*-propyl tartrate (2.6 g, 65%) that was used without further purification: ¹H NMR (300 MHz, CDCl₃) δ 1.06 (t, 6H), 1.68–1.79 (m, 2H), 3.22 (d, 2H), 4.15–4.29 (m, 4H), 4.55 (d, 2H); CI MS *m*/*z* 235 [C₁₀H₁₈O₆+H]⁺.

A solution of di-*n*-propyl tartrate (0.73 g, 3.1 mmol) in ether (10 mL) was magnetically stirred at 0 °C under dry N₂, as periodic acid dihydrate (0.711 g, 3.12 mmol) was added. The resulting solution was stirred for 1 h. Anhydrous Na₂SO₄ was added and the resulting milky solution was filtered. The solvent was evaporated in vacuo to provide **1d** (0.670 g; 93%) as an oil: CI MS m/z 117 [C₅H₈O₃ + H]⁺.^{18,19}

n-Butyl glyoxylate (1e). *d*-Tartaric acid, (25 g, 0.17 mol), *n*-butanol (200 mL), and concentrated H₂SO₄ (59 mL) were heated at reflux overnight. The solution was cooled to room temperature then partitioned between H₂O and CH₂Cl₂. The organic layer was washed consecutively with aqueous saturated NaHCO₃, H₂O, and brine, then dried (Na₂SO₄), filtered, and the solvent removed in vacuo. Kugelrohr distillation (bp 100–105 °C, 0.06 mm Hg) provided di-*n*-butyl tartrate as an oil: ¹H NMR (300 MHz, CDCl₃) δ 0.94 (t, 6H), 1.30–1.48 (m, 4H), 1.60–1.74 (m, 4H), 3.15–3.28 (m, 2H), 4.16–4.30 (m, 4H), 4.54 (d, 2H).

A solution of di-*n*-butyl tartrate (5 g, 19 mmol) in ether (150 mL) was magnetically stirred at 0 °C under dry N₂, as periodic acid dihydrate (4.35 g, 19 mmol) was added over 1 h in portions (3 × 1.45 g). The resulting solution was stirred for 4 h, decanted from the solid precipitate, dried (Na₂SO₄), filtered, and the solvent was evaporated in vacuo to provide **1e** (4.72 g, 96%) as an oil. The crude mixture was immediately used without further purification and characterization.^{18,19}

n-Hexyl glyoxylate (1f). *d*-Tartaric acid (15 g, 0.10 mol), *n*-hexanol (150 mL), and concentrated H₂SO₄ (35 mL) were heated at reflux overnight. The solution was cooled to room temperature then partitioned between H₂O and CH₂Cl₂. The organic layer was washed consecutively with aqueous saturated NaHCO₃, H₂O, and brine, then dried (Na₂SO₄), filtered, and the solvent removed in vacuo. Purification by column chromatography on silica gel (4:1 hexanes/ether) provided di-*n*-hexyl tartrate (7.88 g, 25%) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 0.85–0.95 (m, 6H), 1.28–1.40 (m, 12H), 1.67–1.73 (m, 4H), 3.15 (d, 2H), 4.25 (m, 4H), 4.55 (d, 2H); CI MS *m*/*z* 319 (C₁₆H₃₀O₆+H)⁺.

A solution of di-*n*-hexyl tartrate (7.88 g, 25 mmol) in ether (150 mL) was magnetically stirred at 0 °C under dry N₂, as periodic acid dihydrate (5.64 g, 25 mmol) was added in portions (3 × 1.88 g) over 1 h. The resulting solution was stirred for 2.5 h, decanted from the solid precipitate, dried (Na₂SO₄), filtered and the solvent was evaporated in vacuo to provide crude **1f**. The crude mixture was immediately used without further purification and characterization.^{18,19} *N*,*N*-Dimethyl glyoxamide (1g). A solution of (+)-*N*,*N*,*N'*,*N'*-tetramethyl-L-tartaric acid diamide (2.00 g, 9.79 mmol) in CH₂Cl₂ (60 mL) was magnetically stirred at 0 °C under dry N₂, as periodic acid dihydrate (2.79 g, 12.2 mmol) was added. The resulting solution was stirred for 4.5 h, decanted from the solid precipitate, dried (Na₂SO₄), filtered, and the solvent was evaporated in vacuo to provide crude 1g (1.84 g, 93%) as an oil and was immediately used without further purification: CI MS *m*/*z* 102 [C₄H₇NO₂+H]⁺.

5,10,15,20-Tetrakis(methoxycarbonyl)porphyrin (2a). In a foil covered, 22-L three-neck round-bottomed flask equipped with a mechanical stirrer and a N₂ inlet was added sequentially, freshly distilled methyl glyoxylate (1a, 16.5 g, 187 mmol), CH_2Cl_2 (19 L), and pyrrole (13.0 mL, 194 mmol). The reaction mixture was stirred for 5–10 min then $BF_3 \cdot OEt_2$ (2.30 mL, 18.7 mmol) was added dropwise. The reaction was monitored by the formation of a Soret band through UV-vis spectrometry: small aliquots of the reaction mixture were drawn, oxidized with DDQ, and the solution analyzed by UV-vis spectrometry. After a stirring period of 1.25 h at room temperature, DDQ (31.9 g, 140 mmol) was added. The reaction mixture was stirred for an additional 2.25 h at room temperature, then clay (Clarion 550, 25 g) was added and the suspension was stirred for 2.5 h. Filtration of the reaction mixture through Celite provided, after evaporation of solvents, a crude solid mixture that was adsorbed onto silica gel (15g). Purification by column chromatography on silica gel $(CH_2Cl_2 \text{ as eluent})$ provided porphyrin **2a** (1.55 g, 6.1%) as a purple solid: UV–vis λ_{max} , nm: 404.5; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 9.48 \text{ (s, 4H)}, 4.60 \text{ (s, 12H)}, -3.42$ (s, 2H).

5,10,15,20-Tetrakis(ethoxycarbonyl)porphyrin (2b). Following the procedure for the preparation of **2a** and using freshly distilled ethyl glyoxylate (**1b**, 19.3 g, 189 mmol), the porphyrin **2b** (1.7 g; 6%) was isolated after purification by column chromatography on silica gel (elution with CH₂Cl₂) as a purple solid: mp 260–265 °C; UV–vis λ_{max} , nm (ε): 409 (2.34 × 10⁵); ¹H NMR (300 MHz, CDCl₃) δ 9.52 (s, 8H), 5.11 (q, *J*=7.2 Hz, 8H), 1.81 (t, *J*=7.2 Hz, 12H), -3.33 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 145.3, 131.6, 112.4, 63.7, 15.0; FAB MS *m*/*z* 599 [C₃₂H₃₀N₄O₈ + H]⁺. Anal. calcd for C₃₂H₃₀N₄O₈: C, 64.21; H, 5.05; N, 9.36. Found: C, 64.00; H, 5.18; N, 9.19.

5,10,15,20 - Tetrakis(2,2,2 - trifluoroethoxycarbonyl)porphyrin (2c). Following the procedure for the preparation of 2a and using freshly prepared 2,2,2-trifluoroethyl glyoxylate (1c, 0.85 g, 5.4 mmol), the porphyrin 2c (37 mg, 3.4%) was isolated after purification by column chromatography on silica gel (gradient elution with 50– 66% CH₂Cl₂/hexanes) as a purple solid: ¹H NMR (300 MHz, CDCl₃) δ 9.51 (s, 8H), 5.54 (q, 8H), -3.49 (s, 2H).

5,10,15,20 - Tetrakis(propoxycarbonyl)porphyrin (2d). Following the procedure for the preparation of 2a and using freshly prepared *n*-propyl glyoxylate (1d, 1.31 g, 11.3 mmol), the porphyrin **2d** (130 mg, 7%) was isolated after purification by column chromatography on silica gel (gradient elution with 66–100% CH₂Cl₂/hexanes) as a purple solid: ¹H NMR (300 MHz, CDCl₃) δ 9.52 (s, 8H), 5.02 (t, *J*=6.5 Hz, 8H), 2.13–2.22 (m, 8H), 1.29 (t, *J*=7.8 Hz, 12H), -3.31 (s, 2H).

5,10,15,20-Tetrakis(butoxycarbonyl)porphyrin (2e). Following the procedure for the preparation of **2a** and using freshly prepared *n*-butyl glyoxylate (**1e**, 2.5 g, 19 mmol), the porphyrin **2e** (0.36 g; 11%) was isolated after purification by column chromatography on silica gel (gradient elution with 50–100% CH₂Cl₂/hexanes) as a dark violet solid: ¹H NMR (300 MHz, CDCl₃) δ 9.51 (s, 8H), 5.06 (t, *J*=6.7 Hz, 8H), 2.14 (q, *J*=7.3 Hz, 8H), 1.68–1.73 (m, 8H), 1.12 (t, *J*=7.3 Hz, 12H), -3.32 (s, 2H).

5,10,15,20-Tetrakis(*n*-hexyloxycarbonyl)porphyrin (2f). Following the procedure for the preparation of **2a** and using freshly prepared *n*-hexyl glyoxylate **1f** (4.0 g, 26 mmol), the porphyrin **2f** (810 mg, 15%) was isolated after purification by column chromatography on silica gel (gradient elution with 50–70% CH₂Cl₂/hexanes) as a dark violet solid: ¹H NMR (300 MHz, CDCl₃) δ 9.50 (s, 8H), 5.05 (t, 8H), 2.10–2.20 (m, 8H), 1.62–1.71 (m, 8H), 1.35–1.50 (m, 16H), 0.95 (t, 12H), -3.31 (s, 2H).

5,10,15,20-Tetrakis(dimethylamido)porphyrin (2g). Following the procedure for the preparation of **2a** and using freshly prepared glyoxamide **1g** (1.82 g, 18.0 mmol), the porphyrin **2g** (80 mg, 3%) was isolated after purification by column chromatography on silica gel (gradient elution with 0–2% MeOH/CH₂Cl₂) as a solid mixture of atropisomers: ¹H NMR (300 MHz, CDCl₃) δ 9.27 (s, 8H), 3.80 (s, 12H), 2.71–2.91 (m, 12H), -3.18 to -3.10 (three s, 2H, atropisomers); FAB MS *m*/*z* 595 [C₃₂H₃₄N₈O₄+H]⁺.

meso-(Ethoxycarbonyl)dipyrromethane (3c). In a roundbottom flask equipped with a magnetic stir bar and N_2 inlet was placed freshly prepared ethyl glyoxylate (1b, 12.6 g, 123 mmol), pyrrole (102 mL, 1.48 mol), and Trifluoroacetic acid (3.8 mL, CH_2Cl_2 (700 mL). 49 mmol) was then added. The resulting dark solution was stirred overnight at room temperature, diluted with CH_2Cl_2 , then washed with H_2O , saturated aqueous NaHCO₃, H₂O, and brine. The organic layer was dried (Na₂SO₄), filtered and the solvent removed in vacuo. The crude product was repeatedly purified by column chromatography on silica gel (elution with 50% CH₂Cl₂/hexanes) then recrystallized from CH₂Cl₂/hexanes to provide 3c (9.39 g; 35%) as white crystals: mp 70-75°C; ¹H NMR (300 MHz, CDCl₃) δ 8.45 (br s, 2H), 6.70-6.75 (m, 2H), 6.14-6.17 (m, 2H), 6.06-6.10 (m, 2H), 5.10 (s, 1H), 4.24 (q, J = 7.3 Hz, 2H), 1.31 (t, J = 7.3 Hz, 3H).

meso-(N,N-Dimethylamido)dipyrromethane (3e). Following the procedure for the preparation of 3c and using freshly prepared *N,N-dimethyl glyoxamide (1g, 2.0 g, 20 mmol)*, the dipyrromethane 3e (1.24 g; 31%) was isolated after purification by column chromato-

graphy on silica gel (gradient elution with 40% CH₂Cl₂/ hexanes to 3% MeOH/CH₂Cl₂) as a light brown solid: ¹H NMR (300 MHz, CDCl₃) δ 9.30 (br s, 2H), 6.50–6.55 (m, 2H), 6.06–6.10 (m, 2H), 6.01–6.14 (m, 2H), 5.41 (s, 1H), 3.18 (s, 3H), 2.99 (s, 3H); CI MS *m*/*z* 217 [C₁₂H₁₅N₃O]⁺.

meso-(n-Butoxycarbonyl)dipyrromethane (3f). Following the procedure for the preparation of 3c and using freshly prepared *n*-butyl glyoxylate (1d, 3.85 g, 29.6 mmol), the dipyrromethane 3f (1.04 g, 14%) was isolated after purification by column chromatography on silica gel (elution with 1:1 hexanes/CH₂Cl₂) as a tan solid: ¹H NMR (300 MHz, CDCl₃) δ 8.49 (br s, 2H), 6.72–6.75 (m, 2H), 6.14–6.18 (m, 2H), 6.08 (br s, 2H), 5.12 (s, 1H), 4.18 (t, 2H), 1.60–1.70 (m, 2H), 1.31–1.53 (m, 2H), 0.95 (t, 3H).

5,15-Bis(methoxycarbonyl)-10,20-bis(trifluoromethyl)porphyrin (4). In a foil covered, 500-mL three-neck roundbottomed flask equipped with a magnetic stirrer and a N_2 inlet was added consecutively, freshly distilled methyl glyoxylate (1a, 244 mg, 2.77 mmol), dipyrromethane **3a** (590 mg, 2.75 mmol), and CH₂Cl₂ (280 mL). The reaction mixture was stirred for 5-10 min then $BF_3 \cdot OEt_2$ (112 µL, 0.9 mmol) was added. After a stirring period of 2h at room temperature, DDQ (945 mg, 4.1 mmol) was added in the mixture and stirring was continued for an additional 2h at room temperature. The solvent was removed in vacuo and the residue was adsorbed onto silica gel (3.8 g). Purification by column chromatography on silica gel (elution with CH₂Cl₂) to provide porphyrin 4 (390 mg, 30%) as a solid: ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3) \delta 9.73 \text{ (m, 4H)}, 9.44 \text{ (d, } J = 5.1 \text{ Hz},$ 4H), 4.60 (s, 6H), -2.96 (s, 2H).

5,15-Bis(*n***-propoxycarbonyl)-10,20-bis(trifluoromethyl)porphyrin (5).** Following the procedure for the preparation of **4**, and using freshly prepared *n*-propyl glyoxylate (**1d**, 154 mg, 1.3 mmol), and dipyrromethane **3a** (283 mg, 1.3 mmol), the porphyrin **5** (15 mg, 3.7%) was isolated after purification by column chromatography on silica gel (elution with 50% CH₂Cl₂/hexanes) as a purple solid: ¹H NMR (300 MHz, CDCl₃) δ 9.68–9.79 (m, 4H), 9.46 (d, 4H), 5.04 (t, 4H), 2.15–2.25 (m, 4H), 1.30 (t, 6H), -2.94 (s, 2H).

5,15-bis(Methoxycarbonyl)porphyrin (6) and 5-(methoxycarbonyl)porphyrin (7). Following the procedure for the preparation of 4, and using freshly distilled methyl glyoxylate (1a, 1.76 g, 20 mmol) and dipyrromethane 3b (2.92 g, 20 mmol), the porphyrins 6 (61 mg, 1.4%), 7 (30 mg, 0.7%), and 8 (trace) were isolated after purification by column chromatography on silica gel (gradient elution with 33% hexanes/CH₂Cl₂ to 100% CH₂Cl₂). For porphyrin 6: ¹H NMR (300 MHz, CDCl₃) δ 10.40 (s, 2H), 9.70 (d, 2H), 9.50 (d, 4H), 4.65 (s, 6H), -3.21 (s, 2H). For porphyrin 7: ¹H NMR (300 MHz, CDCl₃) δ 10.49 (s, 2H), 10.34 (s, 1H), 9.70 (d, 2H), 9.52 (d, 2H), 9.48 (s, 2H), 4.65 (s, 3H), -3.60 (s, 2H).

5,15-Bis(ethoxycarbonyl)porphyrin (9) and 5-(ethoxycarbonyl)porphyrin (10). Following the procedure for the preparation of **4**, and using commercially available ethyl glyoxylate (**1b**, 50% in toluene; 310 mg, 1.5 mol) and dipyrromethane **3b**, the porphyrins **9** (22 mg, 7%), **10** (10 mg, 2%), and **7** (3 mg, 0.5%) were isolated after purification by column chromatography on silica gel (gradient elution with 50–75% CH₂Cl₂/hexanes). For porphyrin **9**: ¹H NMR (300 MHz, CDCl₃) δ 10.39 (s, 2H), 9.71 (d, 4H), 9.48 (d, 4H), 5.15 (q, 4H), 1.90 (t, 6H), -3.23 (s, 2H). For porphyrin **10**: ¹H NMR (300 MHz, CDCl₃) δ 10.31 (s, 2H), 10.26 (s, 1H), 9.69 (d, *J*=4.7 Hz, 2H), 9.47 (d, *J*=4.7 Hz, 2H), 9.40–9.45 (m, 4H), 5.14 (q, *J*=6.9 Hz, 2H), 1.87 (t, *J*=6.9 Hz), -3.74 (s, 2H); FAB MS *m/z* 382 [C₂₃H₁₈N₄O₂]⁺.

5,15-Bis(2,2,2-trifluoroethoxycarbonyl)porphyrin (11) and 5-(2,2,2-trifluoroethoxycarbonyl)porphyrin (12). Following the procedure for the preparation of 4, and using freshly prepared 2,2,2-trifluoroethyl glyoxylate (1c, 1.6 g, 9.6 mmol) and dipyrromethane 3b (1.41 g, 9.6 mmol), the porphyrins 11 (54 mg, 1.2%), 12 (38 mg, 0.7%), and 8 (trace) were isolated after purification by column chromatography on silica gel (gradient elution with 50–80% CH₂Cl₂/hexanes). For porphyrin 11: ¹H NMR (300 MHz, CDCl₃) δ 10.42 (s, 2H), 9.70 (d, 4H), 9.50 (d, *J* = 4.8 Hz, 4H), 5.44 (q, *J* = 8.4 Hz, 4H), -3.11 (s, 2H). For porphyrin 12: ¹H NMR (300 MHz, CDCl₃) δ 10.35 (s, 2H), 10.30 (s, 1H), 9.70 (d, 2H), 9.51 (d, 2H), 9.43–9.49 (m, 4H), 5.43 (q, 2H), -3.58 (s, 2H).

5,15-Bis(n-propoxycarbonyl)porphyrin (13) and 5-(n-propoxycarbonyl)porphyrin (14). Following the procedure for the preparation of 4, and using freshly prepared *n*-propyl glyoxylate (1d, 0.5 g, 4.3 mmol) and dipyrromethane 3b (0.63 g, 4.3 mmol), the porphyrins 13 (30 mg, 2.9%), 14 (10 mg, 1.2%), and 8 (trace) were isolated after purification by column chromatography on silica gel (gradient elution with 50–80% $CH_2Cl_2/$ hexanes). For porphyrin 13: ¹H NMR (300 MHz, CDCl₃) δ 10.38 (s, 2H), 9.69 (d, J = 4.8 Hz, 4H), 9.47 (d, J = 4.8 Hz, 4H), 5.03 (t, J = 7.1 Hz, 4H), 2.20–2.27 (m, 4H), 1.31 (t, J=1.3 Hz, 6H), -3.33 (s, 2H). For porphyrin 14: ¹H NMR (300 MHz, CDCl₃) δ 10.36 (s, 2H), 10.33 (s, 1H), 9.70 (d, J=4.8 Hz, 2H), 9.51 (d, J = 4.8 Hz, 4 H), 9.48 (d, J = 4.8 Hz, 2 H), 5.04 (t, J = 6.7 Hz, 2H), 2.22–2.28 (m, 2H), 1.31 (t, J = 7.3 Hz, 3H), -3.62 (s, 2H).

5,15-Bis(*n*-butoxycarbonyl)porphyrin (15). Following the procedure for the preparation of **4**, and using freshly prepared *n*-butyl glyoxylate (1e, 1.0 g, 7.7 mmol) and dipyrromethane **3b** (1.12 g, 7.7 mmol), porphyrins **15** (137 mg, 7%) and **16** (15 mg, 1.3%) were isolated after purification by column chromatography on silica gel (gradient elution with 50–66% CH₂Cl₂/hexanes) as purple solids. For porphyrin **15**: ¹H NMR (300 MHz, CDCl₃) δ 10.19 (s, 2H), 9.58 (d, 4H), 9.37 (d, 4H), 5.07 (t, 4H), 2.13–2.27 (m, 4H), 1.69–1.81 (m, 4H), 1.16 (t, 6H), –3.71 (s, 2H). Porphyrin **18** was not characterized and was used directly in the preparation of **48**.

5,15-Bis(dimethylamido)porphyrin (17) and 5-(dimethylamido)porphyrin (18). Following the procedure for the preparation of 4, and using freshly prepared amide 1g (2.07 g, 20.5 mmol) and dipyrromethane **3b** (3.00 g, 20.5 mmol), the porphyrins **17** (40 mg, 0.9%), **18** (11 mg, 0.2%), and **8** (trace) were isolated after purification by column chromatography on silica gel (gradient elution with 0–5% CH₃OH/CH₂Cl₂). For porphyrin **17**: ¹H NMR (300 MHz, CDCl₃) δ 10.26 (s, 1H), 10.23 (s, 1H), 9.33–9.42 (m, 8H), 3.81 (s, 6H), 2.80 (s, 3H), 2.73 (s, 3H), -3.48 (s, 1H), -3.58 (s, 1H). For porphyrin **18**: ¹H NMR (300 MHz, CDCl₃) δ 10.25 (s, 2H), 10.22 (s, 1H), 9.43 (d, *J*=7.3 Hz, 2H), 9.42 (s, 4H), 9.34 (d, *J*=4.2 Hz, 2H), 3.78 (s, 3H), 2.72 (s, 3H), -3.85 (s, 2H).

5,15-Bis(ethoxycarbonyl)-10,20-bis(4-fluoro-3-methoxyphenylcarbonyl)porphyrin (19) and 5,10,15-tris(ethoxycarbonyl)-20-(4-fluoro-3-methoxyphenylcarbonyl)porphyrin (20). Following the procedure for the preparation of 4, methyl 6-fluoro-3-formylbenzoate²² (650 mg, 3.56 mmol), and dipyrromethane 3c (778 mg, 3.56 mmol), the porphyrins 19 (44 mg, 3.3%) and 20 (42 mg, 5.2%) were isolated after purification by column chromatography on silica gel (elution with CH_2Cl_2). For porphyrin 19: ¹H NMR (300 MHz, CDCl₃) δ 9.47 (d, J = 4.8 Hz, 4H), 8.89 (d, J = 4.8 Hz, 4H), 8.78 (dd, J = 6.2, 1.9 Hz, 2H), 8.32-8.36 (m, 2H), 7.6 (dd, J=9.4, 9.2 Hz, 2H), 5.09 (q, J = 7.2 Hz, 4H), 4.10 (s, 6H), 1.79 (t, J = 7.2 Hz, 6H), -3.08 (s, 2H). For porphyrin 20: ¹H NMR (300 MHz, CDCl₃) δ 9.54 (s, 4H), 9.43 (d, J=4.8 Hz, 2H), 8.89 (d, J = 4.8 Hz, 2H), 8.75 (dd, J = 6.0, 2.1 Hz, 1H), 8.29–8.32 (m, 1H), 7.6 (dd, J = 9.2, 9.1 Hz, 1H), 5.13 (q, J = 7.2 Hz, 6H), 4.01 (s, 3H), 1.83 (t, J=7.2 Hz, 9H), -3.13 (s, 2H).

5,15-Bis(ethoxycarbonyl)-10,20-bis(ethyl)porphyrin (21). In a foil-covered round-bottomed flask equipped with air condenser, dipyrromethane 3c (150 mg, an 0.687 mmol) was stirred in propionic acid (5 mL), H₂O (0.2 mL), and pyridine $(17 \mu \text{L})$ at 90 °C for 5 min. Propionaldehyde (25 µL, 0.34 mmol) was added and the reaction mixture was stirred for 40 min. Another portion of propionaldehyde ($10\,\mu$ L, $0.14\,\text{mmol}$) was added to the reaction mixture, stirred for 2h and diluted with CH_2Cl_2 (15 mL). The organic phase was washed with H_2O (10 mL), 0.05 N NaOH (2 × 10 mL), and H_2O (10 mL), dried (Na₂SO₄), filtered, and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (250 mL) and DDQ (108 mg, 0.48 mmol) was added. After stirring overnight, the sample was adsorbed onto silica gel (4 g). Purification by column chromatography on silica gel (gradient elution with 50-100% CH₂Cl₂/hexanes) provided porphyrin **21** (12 mg, 10%) as a purple solid: ¹H NMR (300 MHz, CDCl₃) δ 9.54 (d, J = 4.5 Hz, 4H), 9.44 (d, J = 4.5 Hz, 4H), 5.11–4.99 (m, 8H), 2.13 (t, J = 7.3 Hz, 6H), 1.81 (t, J = 7.0 Hz, 6H); FAB MS m/z511 $[C_{30}H_{30}N_4O_4 + H]^+$.

5,15-Bis(*n***-butoxycarbonyl)-10,20-bis(methoxycarbonyl)-porphyrin (22) and 5-methoxycarbonyl-10,15,20-tris-**(*n***-butoxycarbonyl)porphyrin (23).** Following the procedure for the preparation of **4** and using freshly distilled methyl glyoxylate (**1a**, 376 mg, 4.27 mmol) and dipyrromethane **3d** (1.04 g, 4.23 mmol), the porphyrins **22** (75 mg, 2.8%) and **23** (20 mg, 0.7%) were isolated after purification by column chromatography. For porphyrin **22**: ¹H NMR (300 MHz, CDCl₃) δ 9.49 (s, 8H), 5.05 (t,

2703

J=6.7 Hz, 4H), 4.59 (s, 6H), 2.11–2.16 (m, 4H), 1.67– 1.72 (m, 4H), 1.11 (t, J=7.5 Hz, 6H), -3.41 (s, 2H). For porphyrin **23**: ¹H NMR (300 MHz, CDCl₃) δ 9.51 (s, 8H), 5.05 (t, J=6.7 Hz, 6H), 4.60 (s, 3H), 2.10–2.14 (m, 6H), 1.67–1.74 (m, 6H), 1.11 (t, J=7.4 Hz, 9H), -3.34 (s, 2H).

5,15-Bis(dimethylamido)-10,20-bis(methoxycarbonyl)porphyrin (24). Following the procedure for the preparation of **4** and using freshly distilled methyl glyoxylate (370 mg, 4.21 mmol) and dipyrromethane **1g** (915 mg, 4.21 mmol), the porphyrin **24** (40 mg, 1.7%) was isolated after purification by column chromatography on silica gel (gradient elution with 0–10% CH₃OH/ CH₂Cl₂) as a dark violet solid: ¹H NMR (300 MHz, CDCl₃) δ 9.53 (d, *J*=4.9 Hz, 4H), 9.30 (d, *J*=4.9 Hz, 4H), 4.60 (s, 6H), 3.81 (s, 6H), 2.71, 2.78 (two s, 6H), -3.12 (s, 2H); FAB MS *m*/*z* 569 [C₃₀H₂₈N₆O₆+H]⁺.²⁵

5,15-**Bis(dimethylamido)**-**10,20**-**bis(ethoxycarbonyl)porphyrin (25).** Following the procedure for the preparation of **4** and using ethyl glyoxylate (**1b**, 50% in toluene, 470 mg, 2.30 mmol) and dipyrromethane **1g** (500 mg, 2.30 mmol), the porphyrin **25** (7 mg, 1%) was isolated after purification by column chromatography on silica gel (gradient elution with 0–3% CH₃OH/CH₂Cl₂) as a dark violet solid: ¹H NMR (300 MHz, CDCl₃) δ 9.57 (d, 4H), 9.30 (d, 4H), 5.11 (q, 4H), 3.80 (s, 6H), 2.70–2.90 (m, 6H), 1.82 (t, 6H), -3.14 (s, 2H); FAB MS *m*/*z* 597 [C₃₂H₃₂N₆O₆+H]⁺.²⁵

[5,10,15,20 - Tetrakis(methoxycarbonyl)porphyrinato]manganese(III) chloride (26) and [5-carboxy-10,15,20tris(methoxycarbonyl)porphyrinato|manganese(III) chloride (27). A solution of 2a (1.11g, 2.0 mmol) and $MnCl_2$ (1.3 g, 10.3 mmol) in DMF (100 mL) was heated at 145°C for 1–1.5h then exposed to a stream of air. The reaction mixture was heated for an additional 2-3h. The reaction mixture was allowed to cool to room temperature overnight under a stream of air. Evaporation of the DMF provided a solid mixture that was adsorbed onto silica gel (3.5 g). Purification by column chromatography on silica gel (gradient elution with 0-10% MeOH/CH₂Cl₂) provided porphyrin 26 (760 mg, 59%) and porphyrin 27 (<5%) as black solids. For porphyrin **26**: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 455.5 (8.8×10^4) ; IR (KBr) 2952, 1724, 1543, 1435, 1339, 1252, 1079, 1010, 900, 803, 800 cm⁻¹; FAB MS m/z 595 $[C_{28}H_{20}MnN_4O_8]^+$. Anal. calcd for $C_{28}H_{20}ClMnN_4O_8$: C, 53.31; H, 3.20; N, 8.88. Found: C, 53.05; H, 3.08; N, 8.92. For porphyrin 27: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 459.5 (8.5 × 10⁴); IR (KBr) 2952, 1720, 1560, 1438, 1384, 1255, 1204, 1080, 1011, 803, 780 cm⁻¹; FAB MS m/z 581 $[C_{27}H_{18}MnN_4O_8]^+$.

[5,10,15,20-Tetrakis(ethoxycarbonyl)porphyrinato]manganese(III) chloride (28), [5-carboxy-10,15,20-tris(ethoxy-carbonyl)porphyrinato]manganese(III) chloride (29), and [5,10,15 - tris(ethoxycarbonyl)porphyrinato]manganese(III) chloride (30). Following the procedure for the preparation of 26 and using 2b (4.43 g, 7.4 mmol), $MnCl_2$ (4.67 g, 37.1 mmol), and DMF (500 mL), the porphyrins 28 (4.3 g; 84%), 29 (<5%), and 30 (<5%) were isolated

after purification by column chromatography on silica gel (gradient elution with 0-7% MeOH/CH₂Cl₂) as black solids. For porphyrin 28: mp > 300 °C; UV-vis $\lambda_{\rm max}$, nm (ϵ): 456 (1.08 \times 10⁵); IR (KBr) 2972, 1720, 1542, 1448, 1368, 1248, 1204, 1078, 1011, 798 cm^{-1} ; FAB MS m/z 651 $[C_{32}H_{28}MnN_4O_8]^+$. Anal. calcd for C₃₂H₂₈ClMnN₄O₈: C, 55.95; H, 4.11; N, 8.16. Found: C, 55.70; H, 4.23; N, 7.96. For porphyrin 29: mp > 300 °C; UV–vis λ_{max} , nm (ε): 460.5 (7.8 × 10⁴); IR (KBr) 2925, 1720, 1630, 1447, 1367, 1249, 1204, 1079, $799 \, \text{cm}^{-1};$ FAB 835, MS 1011. m/z623 $[C_{30}H_{24}MnN_4O_8]^+$. For porphyrin **30**: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 454.5 (1.14 × 10⁵); IR (KBr) 1981, 1719, 1245, 1162, 1076, 1006, 797 cm⁻¹; FAB MS m/z579 $[C_{29}H_{24}MnN_4O_6]^+$.

[5,10,15,20 - Tetrakis(2,2,2 - trifluoroethoxycarbonyl)porphyrinato]manganese(III) chloride (31). Following the procedure for the preparation of 26 and using porphyrin 2c (36 mg, 0.043 mmol), MnCl₂ (27 mg, 0.21 mmol), and DMF (10 mL), the porphyrin 31 (23 mg, 58%) was isolated after purification by column chromatography on silica gel (gradient elution with 0– 3% MeOH/CH₂Cl₂) as a dark brown solid: UV–vis λ_{max} , nm (ϵ): 453.5 (7.30 × 10⁴); IR (KBr) 2931, 1744, 1175, 1082, 801 cm⁻¹; FAB MS *m*/*z* 867 [C₃₂H₁₆F₁₂MnN₄O₈]⁺.

[5,10,15,20 - Tetrakis(*n* - propoxycarbonyl)porphyrinato]manganese(III) chloride (32). Following the procedure for the preparation of 26 and using porphyrin 2d (170 mg, 0.260 mmol), MnCl₂ (167 mg, 1.32 mmol), and DMF (30 mL), the porphyrin 32 (170 mg, 88%) was isolated after purification by column chromatography on silica gel (elution with 2.5% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 456.0 (1.35 × 10⁵); IR (KBr) 2968, 1720, 1542, 1458, 1245, 1204, 1079, 1010, 924, 804 cm⁻¹; FAB MS *m*/*z* 707 [C₃₆H₃₆MnN₄O₈]⁺.

[5,10,15,20 - Tetrakis(n - butoxycarbonyl)porphyrinato]manganese(III) chloride (33) and [5-carboxy-10,15,20tris(n-butoxycarbonyl)porphyrinato|manganese(III) chloride (34). Following the procedure for the preparation of 26 and using porphyrin 2e (355 mg, 0.50 mmol), $MnCl_2$ (318 mg, 2.53 mmol), and DMF (50 mL), the porphyrins **33** (170 mg, 43%) and **34** (10 mg, 2.7%) were isolated after purification by column chromatography on silica gel (gradient elution with 0-5% MeOH/ CH₂Cl₂) as black solids. For porphyrin 33: mp 200-210 °C; UV–vis λ_{max} , nm (ε): 456.0 (1.4 × 10⁵); IR (KBr) 2960, 2873, 1721, 1543, 1459, 1384, 1339, 1249, 1204, 1079, 1010, 800 cm^{-1} ; FAB MS m/z 763 $[C_{40}H_{44}MnN_4O_8]^+$. For porphyrin 34: mp 200–205 °C; UV–vis λ_{max} , nm (ϵ): 459.5 (7.2 × 10⁴); IR (KBr) 2960, 1720, 1560, 1459, 1249, 1204, 1080, 1011, $799 \,\mathrm{cm}^{-1}$; FAB MS m/z 707 $[C_{36}H_{36}MnN_4O_8]^+$.

[5,10,15,20-Tetrakis(*n*-hexyloxycarbonyl)porphyrinato]manganese(III) chloride (35). Following the procedure for the preparation of 26 and using porphyrin 2f (200 mg, 0. 43 mmol), MnCl₂ (152.3 mg, 1.21 mmol), and DMF (200 mL), the porphyrin 35 (218 mg, 98%) was isolated after purification by column chromatography on silica gel (elution with 5% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 456.0 (1.6 × 10⁵); IR (KBr) 2931, 1720, 1543, 1459, 1248, 1204, 1081, 1010, 800 cm⁻¹; FAB MS *m*/*z* 875 [C₄₈H₆₀MnN₄O₈]⁺.

[5,10,15,20 - Tetrakis(dimethylamido)porphyrinato]manganese(III) chloride (36). Following the procedure for the preparation of 26 and using porphyrin 2g (80 mg, 0.14 mmol) MnCl₂ (270 g, 2.15 mmol), and DMF (35 mL), the porphyrin 36 (25 mg, 27%) was isolated after purification by column chromatography on silica gel (gradient elution with 0–10% MeOH/CH₂Cl₂) as a dark brown solid: UV–vis λ_{max} , nm: 462.0; IR (KBr) 2927, 1624, 1497, 1452, 1406, 1188, 1071, 1012, 799, 699 cm⁻¹; FAB MS *m/z* 647 [C₃₂H₃₂MnN₈O₄]⁺.

[5,15-Bis(methoxycarbonyl) - 10,20 - bis(trifluoromethyl)porphyrinato|manganese(III) chloride (37) and [5,15-bis(trifluoromethyl) - 10 - carboxy - 20 - (methoxycarbonyl) porphyrinato|manganese(III) chloride (38). Following the procedure for the preparation of 26 and using porphyrin 4 (115 mg, 0.20 mmol), MnCl₂ (130 mg, 1.0 mmol), and DMF (30 mL), the porphyrins 37 (117 mg, 88%) and 38 (15 mg, 12%) were isolated after purification by column chromatography on silica gel (gradient elution with 3-10% MeOH/CH₂Cl₂) as black solids. For porphyrin 37: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 450 (9.90 × 10⁴); IR (KBr) 2926, 1734, 1541, 1436, 1259, 1159, 1127, 1081, 1041, 800 cm^{-1} ; FAB MS m/z 615 $[C_{26}H_{14}F_6MnN_4O_4]^+$. For porphyrin 38: mp > 300 °C; UV-vis λ_{max} , nm (ϵ): 455 (3.06 × 10⁴); IR (KBr) 2926, 1728, 1586, 1257, 1157, 1123, 1084, 1041, 799 cm⁻¹; FAB MS m/z 601 [C₂₅H₁₂F₆ $MnN_4O_4]^+$.

[5,15-Bis(n-propoxycarbonyl)-10,20-bis(trifluoromethyl)porphyrinatolmanganese(III) chloride (39). Following the procedure for the preparation of 26 and using porphyrin 5 (15 mg, 0.02 mmol), MnCl₂ (28 mg, 0.22 mmol), and DMF (10 mL), the porphyrin 39 (15 mg, 87%) was isolated after purification by column chromatography on silica gel (gradient elution with 0-2.5% MeOH/ CH₂Cl₂) as a black solid: UV-vis λ_{max} , nm (ϵ): 450.5 (1.10×10^5) ; IR (KBr) 2921, 1720, 1542, 1259, 1127, $800 \, \text{cm}^{-1}$; FAB 1081, 1042, MS m/z671 $[C_{30}H_{22}F_6MnN_4O_4]^+$.

[5,15 - Bis(methoxycarbonyl)porphyrinato]manganese(III) chloride (40). Following the procedure for the preparation of 26 and using porphyrin 6 (61 mg, 0.142 mmol), MnCl₂ (90 mg, 0.71 mmol), and DMF (70 mL), the porphyrin 40 (25 mg, 34%) was isolated after purification by column chromatography on silica gel (elution with 5% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UVvis λ_{max} , nm (ϵ): 452.0 (4.40 × 10⁴); IR (KBr) 2921, 1697, 1437, 1384, 1317, 1272, 1156, 1076, 1005, 897, 797 cm⁻¹; FAB MS *m*/*z* 479 [C₂₄H₁₆MnN₄O₄]⁺.

[5-(Methoxycarbonyl)porphyrinato]manganese(III) chloride (41). Following the procedure for the preparation of 26 and using porphyrin 7 (30 mg, 0.081 mmol), MnCl₂ (51 mg, 0.41 mmol), and DMF (30 mL), the porphyrin **41** (5 mg, 14%) was isolated after purification by column chromatography on silica gel (elution with 5% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 451.5 (3.90 × 10⁴); FAB MS m/z 421 [C₂₂H₁₄MnN₄O₂]⁺.

[5,15 - Bis(ethoxycarbonyl)porphyrinato]manganese(III) chloride (42). Following the procedure for the preparation of 26 and using porphyrin 9 (22 mg, 0.058 mmol), MnCl₂ (55 mg, 0.44 mmol), and DMF (8 mL), the porphyrin 42 (6 mg, 19%) was isolated after purification by column chromatography on silica gel (gradient elution with 0–7% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ɛ): 452.5 (2.48 × 10⁴); IR (KBr) 2921, 1717, 1259, 1151, 1074, 698 cm⁻¹; FAB MS m/z 507 [C₂₆H₂₀MnN₄O₄]⁺.

[5,15 - Bis(2,2,2 - trifluoroethoxycarbonyl)porphyrinato]manganese(III) chloride (43). Following the procedure for the preparation of 26 and using porphyrin 11 (54 mg, 0.1 mmol), MnCl₂ (63 mg, 0.5 mmol), and DMF (60 mL), the porphyrin 43 (45 mg, 72%) was isolated after purification by column chromatography on silica gel (gradient elution with 5–7.5% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 451.0 (8.0 × 10⁴); IR (KBr) 2921, 1736, 1286, 1227, 1178, 1151, 1077, 1001, 794 cm⁻¹; FAB MS *m*/*z* 615 [C₂₆H₁₄F₆MnN₄O₄]⁺.

[5 - (2,2,2 - Trifluoroethoxycarbonyl)porphyrinato|manganese(III) chloride (44). Following the procedure for the preparation of 26 and using porphyrin 12 (38 mg, 0.09 mmol), MnCl₂ (58 mg, 0.46 mmol), and DMF (40 mL), the porphyrin 44 (42 mg, 92%) was isolated after purification by column chromatography on silica gel (gradient elution with 5–7.5% $MeOH/CH_2Cl_2$) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 451.0 (3.90×10^4) ; IR (KBr) 2931, 1736, 1618, 1287, 1153, $1004 \,\mathrm{cm}^{-1}$: 1086. FAB MS m/z489 $[C_{23}H_{13}F_{3}MnN_{4}O_{4}]^{+}$.

[5,15-Bis(*n*-propoxycarbonyl)porphyrinato]manganese(III) chloride (45). Following the procedure for the preparation of **26** and using porphyrin **13** (30 mg, 0.062 mmol), MnCl₂ (39 mg, 0.27 mmol), and DMF (25 mL), the porphyrin **45** (35 mg, 98%) was isolated after purification by column chromatography (gradient elution with 5– 7.5% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 452.5 (6.10 × 10⁴); IR (KBr) 2968, 1711, 1536, 1458, 1384, 1262, 1236, 1156, 1075, 1001, 922 cm⁻¹; FAB MS *m*/*z* 535 [C₂₈H₂₄MnN₄O₄]⁺.

[5-(*n*-Propoxycarbonyl)porphyrinato]manganese(III) chloride (46). Following the procedure for the preparation of 26 and using porphyrin 14 (10 mg, 0.025 mmol), MnCl₂ (22 mg, 0.17 mmol), and DMF (20 mL), the porphyrin 46 (9 mg, 74%) was isolated after purification by column chromatography on silica gel (gradient elution with 5–7.5% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 451.5 (3.7 × 10⁴); IR (KBr) 2921, 1719, 1384, 1259, 1154, 1084, 1003 cm⁻¹; FAB MS *m*/*z* 449 [C₂₄H₁₈MnN₄O₂]⁺. [5,15-Bis(*n*-butoxycarbonyl)porphyrinato]manganese(III) chloride (47). Following the procedure for the preparation of 26 and using porphyrin 15 (137 mg, 0.27 mmol), MnCl₂ (170 mg, 1.3 mmol), and DMF (110 mL), the porphyrin 47 (65 mg, 43%) was isolated after purification by column chromatography on silica gel (elution with 5% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ε): 563 (8.4 × 10⁴); IR (KBr) 2959, 1717, 1537, 1458, 1384, 1260, 1234, 1073, 1001, 794 cm⁻¹; FAB MS *m*/*z* 563 [C₃₀H₂₈MnN₄O₄]⁺.

[5-(*n*-Butoxycarbonyl)porphyrinato]manganese(III) chloride (48). Following the procedure for the preparation of **26** and using porphyrin **16** (15 mg, 0.037 mmol), MnCl₂ (18 mg, 0.15 mmol), and DMF (15 mL), the porphyrin **48** (8 mg, 44%) was isolated after purification by column chromatography on silica gel (gradient elution with 2.5–5% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ε): 452.0 (5.6 × 10⁴); IR (KBr) 2921, 1718, 1384, 1257, 1154, 1084, 1003 cm⁻¹; FAB MS *m*/*z* 463 [C₂₅H₂₀MnN₄O₂]⁺.

[5,15 - Bis(dimethylamido)porphyrinato]manganese(III) chloride (49). Following the procedure for the preparation of 26 and using porphyrin 17 (40 mg, 0.088 mmol), MnCl₂ (195 mg, 1.55 mmol), and DMF (18 mL), the porphyrin 49 (11 mg, 23%) was isolated after purification by column chromatography on silica gel (gradient elution with 2–8% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 455.5 (3.03 × 10⁴); IR (KBr) 2926, 1611, 1498, 1074, 1006, 697 cm⁻¹; FAB MS m/z 505 [C₂₆H₂₂MnN₆O₂]⁺.

[5-(Dimethylamido)porphyrinato]manganese(III) chloride (50). Following the procedure for the preparation of 26 and using porphyrin 18 (11 mg, 0.029 mmol), MnCl₂ (2 × 73 mg, 0.58 mmol), and DMF (10 mL), the porphyrin 50 (6 mg, 43%) was isolated after purification by column chromatography on silica gel (7% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV-vis λ_{max} , nm (ϵ): 453.0 (2.17 × 10⁴); IR (KBr) 2925, 1637, 1508, 1005, 698 cm⁻¹; FAB MS *m*/*z* 434 [C₂₃H₁₇MnN₅O]⁺.

[5,15-Bis(ethoxycarbonyl)-10,20-bis(4-fluoro-3-methoxyphenylcarbonyl)porphyrinato]manganese(III) chloride (51). Following the procedure for the preparation of 26 and using porphyrin 19 (44 mg, 0.06 mmol), MnCl₂ (42 mg, 0.33 mmol), and DMF (25 mL), the porphyrin 51 (36 mg, 73%) was isolated after purification by column chromatography on silica gel (gradient elution with 2.5–4% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ε): 460.5 (1.58 × 10⁵); IR (KBr) 2921, 1720, 1492, 1430, 1303, 1246, 1277, 1011, 800, 698 cm⁻¹; FAB MS *m*/*z* 811 [C₄₂H₃₀F₂MnN₄O₈]⁺.

[5,10,15-Tris(ethoxycarbonyl)-20-(4-fluoro-3-methoxyphenylcarbonyl)porphyrinato]manganese(III) chloride (52). Following the procedure for the preparation of 26 and using porphyrin 20 (42 mg, 0.06 mmol), MnCl₂ (100 mg, 0.79 mmol), and DMF (25 mL), the porphyrin 52 (34 mg, 72%) was isolated after purification by column chromatography on silica gel (gradient elution with 2.5– 5% MeOH/CH₂Cl₂) as a black: mp 200–205 °C; UV–vis $λ_{\text{max}}$, nm (ε): 458.0 (1.18 × 10⁵); IR (KBr) 2921 1720, 1542, 1369, 1249, 1203, 1078, 1011, 800, 698 cm⁻¹; FAB MS m/z 731 [C₃₇H₂₉FMnN₄O₈]⁺.

[5,15-Bis(ethoxycarbonyl)-10,20-bis(ethyl)porphyrinato]manganese(III) chloride (53). Following the procedure for the preparation of 26 and using porphyrin 21 (12 mg, 0.025 mmol), MnCl₂ (23 mg, 0.19 mmol), and DMF (4 mL), the porphyrin 53 (3.5 mg, 24%) was isolated after purification by column chromatography on silica gel (gradient elution with 0-6% MeOH/CH₂Cl₂) as a black solid: mp >300 °C; UV–vis λ_{max} , nm (ϵ): 462.5 (3.43 \times 10⁴); IR (KBr) 2926, 1708, 1542, 1459, $1078 \,\mathrm{cm}^{-1};$ FAB 1250. 1200. MS m/z563 $[C_{30}H_{28}MnN_4O_4]^+$.

[5,15-Bis(n-butoxycarbonyl)-10,20-bis(methoxycarbonyl)porphyrinato|manganese(III) chloride (54) and [10,20bis(*n*-butoxycarbonyl)-5-carboxy-15-(methoxycarbonyl)porphyrinato|manganese(III) chloride (55). Following the procedure for the preparation of 26 and using porphyrin 22 (75 mg, 0.12 mmol), MnCl₂ (163 mg, 1.30 mmol), and DMF (35 mL), the porphyrins 54 (33 mg, 39%), and 55 (10 mg, 12%) were isolated after purification by column chromatography on silica gel (gradient elution with 0-7.5% MeOH/CH₂Cl₂) as black solids. For porphyrin 54: mp 200–205 °C; UV–vis λ_{max} , nm (ϵ): 456.0 (9.50 × 10⁴); IR (KBr) 2958, 1724, 1450, 1250, 1205, 1079, 1011, 802 cm^{-1} ; FAB MS m/z 679 $[C_{34}H_{32}MnN_4O_8]^+$. For porphyrin 55: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 460.0 (8.20 × 10⁴); IR (KBr) 2960, $1720, 1560, 1352, 1250, 1204, 1080, 1011, 800, 698 \text{ cm}^{-1};$ FAB MS m/z 665 $[C_{33}H_{30}MnN_4O_8]^+$.

[5-Methoxycarbonyl-10,15,20-tris(*n*-butoxycarbonyl)porphyrinato]manganese(III) chloride (56). Following the procedure for the preparation of 26 and using porphyrin 23 (20 mg, 0.03 mmol), MnCl₂ (28 mg, 0.22 mmol), and DMF (25 mL), the porphyrin 56 (6 mg, 27%) was isolated after purification by column chromatography on silica gel (gradient elution with 2–7.5% MeOH/CH₂Cl₂) as a black solid: mp 180–185 °C; UV– vis λ_{max} , nm (ϵ): 456.0 (7.10 × 10⁴); IR (KBr) 2960, 1721, 1542, 1458, 1250, 1205, 1080, 1011, 801 cm⁻¹; FAB MS *m*/*z* 721 [C₃₇H₃₈MnN₄O₈]⁺.

[5,15 - Bis(dimethylamido) - 10,20 - bis(methoxycarbonyl)porphyrinato]manganese(III) chloride (57). Following the procedure for the preparation of 26 and using porphyrin 24 (41 mg, 0.072 mmol), MnCl₂ (181 mg, 1.44 mmol), and DMF (18 mL), the porphyrin 57 (10 mg, 21%) was isolated after purification by column chromatography on silica gel (gradient elution with 5–20% MeOH/CH₂Cl₂) as a black solid: mp > 300 °C; UV–vis λ_{max} , nm (ϵ): 458.5 (3.33 × 10⁴); FAB MS *m*/*z* 621 [C₃₀H₂₆MnN₆O₆]⁺.

[5,15-Bis(dimethylamido)-10,20-bis(ethoxycarbonyl)porphyrinato]manganese(III) chloride (58). Following the procedure for the preparation of 26 and using porphyrin 25 (7.0 mg, 0.012 mmol), MnCl₂ (15 mg, 0.12 mmol), and DMF (6 mL), the porphyrin 58 (2.3 mg, 29%) was isolated after purification by column chromatography on silica gel (10% MeOH/CH₂Cl₂) as a dark brown solid: mp > 300 °C; UV–vis λ_{max} , nm: 458.5; IR (KBr) 1916, 1720, 1618, 1542, 1492, 1452, 1257, 1206, 1081, 1011, 801, 698 cm⁻¹; FAB MS *m*/*z* 649 $[C_{32}H_{30}MnN_6O_6]^+$.

SOD assay

Superoxide dismutase activity was measured by cytochrome c reduction as previously described.^{29,35} Briefly, reactions were performed in buffer containing 50 mM potassium phosphate and 0.1 mM EDTA at pH 7.8. The addition of EDTA allows one to examine only complexes that tightly ligate the metal. Cytochrome c was titrated to give a final concentration of 10 uM of the oxidized form. Xanthine was added to give a final concentration of 50 μ M. Xanthine oxidase (~2 nM) was titrated to generate superoxide flux that reduces cytochrome c at a rate of 0.025 abs/min at 550 nm. The amount of metalloporphyrin that inhibited this rate of cytochrome c reduction by one-half was defined as 1 SOD unit of activity. Possible interferences in the SOD assay were examined by checking the direct reduction of cytochrome c by the metalloporphyrin and possible inhibition of xanthine oxidase by monitoring urate production at 234 nm. A number of compounds still interfered with the SOD assay through unknown mechanisms.

Catalase assay

The dismutation of hydrogen peroxide was measured by following the formation of oxygen with a Clark-type electrode as previously described.^{6d} Reactions were performed in degassed buffer containing 50 mM potassium phosphate and 0.1 mM EDTA at pH 7.8. Pseudo first order rate constants were obtained from plotting the decay of 1 mM hydrogen peroxide at four concentrations of metalloporphyrin (k_{app} , min⁻¹). Some of the metalloporphyrins were not stable in the presence of 1 mM hydrogen peroxide and were excluded from the assay.

Lipid peroxidation assay

The ability of metalloporphyrins to inhibit lipid peroxidation was assessed as previously described.³¹ Iron and ascorbate were used to initiate lipid peroxidation in rat brain homogenates and the formation of thiobarbituric acid reactive species (TBARS) was measured as an index of lipid peroxidation.^{32,33} Potency of the metalloporphyrins was determined as their concentration that inhibited 50% of the iron/ascorbate-initiated TBARS formation (IC₅₀, μ M). Blanks were run to determine if any of the metalloporphyrins tested reacted with thiobarbituric acid and all samples were corrected for color absorption due to the metalloporphyrins.

References and Notes

1. (a) Kinnula, V. L.; Crapo, J. D.; Raivio, K. O. Lab. Invest. **1995**, 73, 3. (b) Muizeloar, J. P. Ann. Emerg. Med. **1993**, 22, 1014. (c) Freeman, B. A.; Crapo, J. D. Lab. Invest. **1982**, 47, 412. (d) Halliwell, B.; Gutteridge, J. M. C. *Biochem. J.* 1984, 219, 1.

2. Ames, B. N.; Shigenaga, M. K.; Hagen, T. M. Proc. Natl. Acad. Sci. 1993, 90, 7915.

 (a) Fantone, J. C.; Ward, P. A. Am. J. Pathol. 1982, 397.
 (b) Leff, A. Adv. Exp. Med. Biol. 1994, 366, 199. (c) Chan,
 P. H. J. Cereb. Blood Flow Metab. 2001, 21, 2. (d) Gromadzinska, J.; Wasowicz, W. Int. J. Occup. Med. Environ. Health 2000, 13, 233. (e) Brownlee, M. Nature 2001, 414, 813.
 (a) Kukreja, R. C.; Hess, M. L. Cardiovasc. Res. 1992, 26, 641. (b) McCord, J. M. Clin. Biochem. 1993, 26, 351.

5. Halliwell, B.; Chirico, S. Am. J. Clin. Nutr. 1993, 57, 715S.

6. (a) Pasternack, R. F.; Barth, A.; Pasternack, J. M.; Johnson, C. S. *Inorg. Biochem.* 1981, *15*, 261. (b) Faraggi, M. In *Oxygen Radicals in Chemistry and Biology*; Bors, W., Saram, M., Tait, D., Eds.; De Gruyter: Berlin, Germany, 1984; p 419. (c) Faulkner, K. M.; Liochev, S. I.; Fridovich, I. *J. Biol. Chem.* 1994, *269*, 23471. (d) Day, B. J.; Fridovich, I.; Crapo, J. D. Arch. Biochem. Biophys. 1997, *347*, 256. (e) Doggrell, S. A. *Drugs Future* 2002, *27*, 385.

7. (a) Gauuan, P. J. F.; Gregor, Livia B.; Trova, M. P.; Bocckino, S. B.; Crapo, J. D.; Day, B. J. *Bioorg. Med.* **2002**, *10*, 3013.

8. (a) Terada, M.; Mikami, K. *J. Chem. Soc., Chem. Commun.* **1995**, *23*, 2391. (b) Mikami, K.; Terada, M.; Nakai, T.; Sayo, N.; Kumobayashi, H. Eur. Pat. Appl. 353053, 1990. (c) Johannsen, M.; Joergensen, K. A. *J. Org. Chem.* **1995**, *60*, 5757. (d) Achmatowicz, O., Jr.; Bialecka-Florjanczyk, E. *Tetrahedron* **1990**, *46*, 5317.

9. (a) Ramiandrasoa, P.; Guerlin, P.; Girault, J. P.; Bascou, P.; Hammouda, A.; Cammas, S.; Vert, M. *Polym. Bull. (Berlin)* **1993**, *30*, 501. (b) Gallop, M. A.; Gordon, E.; Ruhland, B. WO 96 16, 333, 1996. (c) Holmes, C. WO 9600378, 1996. (d) Ruhland, B.; Bhandari, A.; Gordon, E. M.; Gallo, M. A. *J. Am. Chem. Soc.* **1996**, *118*, 243.

 (a) Stevenson, G. I.; Leeson, P. D.; Rowley, M. *Bioorg. Med. Chem. Lett.* **1992**, *2*, 371. (b) Leeson, P. D.; Carling, R. W.; Moore, K. W.; Moseley, A. M.; Smith, J. D.; Stevenson, G.; Chan, T.; Baker, R.; Foster, A. C. *J. Med. Chem.* **1992**, *35*, 1954. (c) Baker, R.; Ladduwahetty, T.; Leeson, P. D.; Williams, B. J. Eur. Patent 362941, 1990.

11. Rowley, M.; Leeson, P. D.; Williams, B. J.; Moore, K. *Tetrahedron* **1992**, *48*, 3557.

- 12. Chang, M. H.; Kang, H. Y.; Koh, H. Y.; Cho, Y. S.; Shim, S. C. US Patent 5,051,530, 1991.
- 13. (a) Takahashi, T. JP Patent 07118221, 1995. (b) Takahashi, T.; Okano, T.; Harada, T.; Imamura, K.; Yamada, H. *Synlett* **1994**, *2*, 121.
- 14. Palacios, F.; Alonso, C.; Rubiales, G. J. Org. Chem. 1997, 62, 1146.

15. Bishop, J. E.; O'Connell, J. F.; Rapoport, H. J. Org. Chem. 1991, 56, 5079.

16. Collman, J. P.; Chong, A. O.; Jameson, G. B.; Oakley, R. T.; Rose, E.; Schmittou, E. T.; Ibers, J. A. J. Am. Chem. Soc. **1981**, 103, 516.

17. Hook, J. M. Synth. Commun. 1984, 14, 83.

18. (a) Vicovic, V. M. Organic Syntheses; Wiley & Sons: New York, 1943; Collect. Vol. 2, p 264. (b) McDermott, F. A. Organic Syntheses; Wiley & Sons: New York, 1943; Collect. Vol. 2, p 365. (c) Bowden, E. Organic Syntheses; Wiley & Sons: New York, 1943; Collect. Vol. 2, p 414.

19. Kelly, R. T.; Schmidt, T. E.; Haggerty, J. G. Synthesis 1997, 544.

20. Manka, J. S.; Lawrence, D. S. Tetrahedron Lett. 1989, 30, 6989.

21. (a) Wijesekera, T. P. *Can. J. Chem.* **1996**, *74*, 1868. (b) Nishino, Norikazu; Wagner, R. W.; Lindsey, J. S. J. Org. *Chem.* **1996**, *61*, 7534.

22. (a) Chong, R.; Clezy, P. S.; Liepa, A. J.; Nichol, A. W. Aust. J. Chem. **1969**, 22, 229. (b) Clezy, P. S.; Smythe, G. A. Aust. J. Chem. **1969**, 22, 239.

23. (a) Trova, M.P.; Crapo, J.D.; Fridovich, I.; Oury, T.; Day, B.J.; Folz, R.J.; Freeman, B.A.; Batinic-Haberle, I. WO 9640223, 1998. (b) Crapo, J.D.; Fridovich, I.; Oury, T.; Day, B.J.; Folz, R.J.; Freeman, B.A.; Trova, M. P. EP 96923328, 1998.

24. Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. J. Org. Chem. **1967**, *32*, 476.

25. TLC analysis of the reaction mixture during the preparation of 24 and 25 indicated the presence of multiple components, initially attributed to acidolysis products. Subsequent mass spectral analysis of the isolated components gave equal m/z values for the major ion peak. This indicated to us that the components were slowly interconverting atropisomers resulting from hindered rotation about the amide bonds. Atropisomerism was also observed during the preparation of compounds 2g and 17.

26. McCord, J. M.; Fridovich, I. Ann. Intern. Med. 1978, 89, 122.

27. (a) Ho, Y. S.; Vincent, R.; Dey, M. S.; Slot, J. W.; Crapo,

J. D. Am. J. Respir. Cell Mol. Biol. 1998, 18, 538. (b) Kubisch, H. M.; Wang, J.; Bray, T. M.; Phillips, J. P. Diabetes 1997, 46, 1563.

28. Salvemini, D.; Riley, D. P.; Cuzzocrea, S. Nat. Rev. Drug Disc. 2002, 1, 367.

29. McCord, J. M.; Fridovich, I. J. Biol. Chem. 1969, 244, 6049.

30. Del Rio, L. A.; Ortega, M. G.; Lopez, A. A.; Gorge, J. L. *Anal. Biochem.* **1977**, *80*, 409.

31. Day, B. J.; Batinic-Haberle, I.; Crapo, J. D. Free Radic. Biol. Med. 1999, 26, 730.

32. Ohkawa, H.; Oishi, N.; Yagi, K. Anal. Biochem. 1979, 95, 351.

33. Yue, T.; Cheng, H.; Lysko, P. G.; McKenna, P. J.; Feuerstein, R.; Gu, J.; Lysko, K. A.; Davis, L. L.; Feuerstein, G. J. Pharmacol. Exp. Ther. **1992**, 263, 92.

34. Choudhary, S.; Keshavarzian, A.; Yong, S.; Wade, M.; Bocckino, S.; Day, B. J.; Banan, A. *Dig. Dis. Sci.* **2001**, *46*, 2222.

35. Crapo, J. D.; McCord, J. M.; Fridovich, I. *Methods Enzymol.* **1978**, *53*, 382.