ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Titanium superoxide: a heterogeneous catalyst for *anti*-Markovnikov aminobromination of olefins

Tanveer Mahamadali Shaikh, Pratibha U. Karabal, Gurunath Suryavanshi, Arumugam Sudalai *

Chemical Engineering and Process Development Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 Maharashtra, India

ARTICLE INFO

Article history:
Received 3 March 2009
Revised 20 March 2009
Accepted 26 March 2009
Available online 28 March 2009

Keywords:
Titanium superoxide
N-Bromosuccinimide
p-Toluenesulfonamide
Bromoamination
anti-Markovnikov addition

ABSTRACT

A new facile procedure for the aminobromination of olefins in high yields has been described using *p*-toluene sulfonamide (*p*-TsNH₂) and *N*-bromosuccinimide (NBS) as nitrogen and bromine sources, respectively, and titanium superoxide as a truly heterogeneous catalyst. The formation of *anti*-Markovnikov product exclusively in all the cases studied possibly proceeding through a free radical reaction pathway is remarkable.

© 2009 Elsevier Ltd. All rights reserved.

The vicinal haloamine functionality represents a useful structural moiety as well as a versatile building block in organic and medicinal chemistry. In the area of synthetic organic chemistry, these can be readily converted into a variety of useful functional derivatives on replacement of halogen with nucleophiles in both intramolecular and intermolecular fashion.² Literature search reveals that vicinal haloaminations are carried out using several catalysts such as V₂O₅,³ MnSO₄,³ Mn(II) salen,³ Cu-salts,⁴ InBr₃,⁵ Fe-salt,⁶ BF₃,⁷ SnCl₄,⁸ Pd-complex,⁹ PhI(OAc)₂,¹⁰ *N-N*-dihalosulfonamides, ^{11a} N-N-dihalocarbamates, ^{11b-g} N-halocarbamates ^{11h} cyanamide-NBS¹¹ⁱ as well as by noncatalytic routes which include use of Bronsted acids¹² such as H₂SO₄ or ionic liquid media [Bmim][BF₄]. But most of these methods suffer from drawbacks such as lack of product selectivity and use of non-economic, unstable, and toxic metals as catalysts. Hence, a search for readily available non-toxic, inexpensive and reusable catalyst is highly desirable. In this Letter, we report that titanium superoxide^{14a} catalyzes aminobromination of olefins, which proceeds regiospecifically in an anti-Markovnikov fashion and under truly heterogeneous conditions.

Some time ago, we have reported a new method for the preparation of titanium superoxide, which was found to exist as a remarkably stable radical at ambient conditions.¹⁵ This heterogeneous catalyst has been subsequently found to catalyze the selective oxidation of aromatic primary amines and phenols to the corresponding nitro aromatics and *p*-quinones, respectively.¹⁵ Dur-

ing the course of our study on further application of titanium superoxide in organic synthesis, we have now found that olefins can be regiospecifically aminobrominated using *p*-TsNH₂ and NBS as nitrogen and bromine sources under ambient conditions. For instance, when styrene was subjected to bromoamination, the corresponding *anti*-Markovnikov product, **1**, was formed in 81% yield; whereas the commercially available TiO₂, under similar conditions, gave the expected Markovnikov product, **2** in 30% yield (Scheme 1).

Encouraged by this result, it was of interest to screen several other titanium salts such as titanium silicalite (a zeolite), TiCl₄, and titanium isopropoxide under similar reaction conditions; the results of which are presented in Table 1. Remarkably, titanium superoxide gave the *anti*-Markovnikov product 1 in 81% yield whereas all other titanium salts furnished the expected Markovnikov product, 2 with low yields. Among several solvents screened, CH₂Cl₂ was found to be more suitable for titanium superoxide-catalyzed aminobromination of olefins. Thus, the optimal condition

Br NHTs
$$\stackrel{\text{}}{\longrightarrow}$$
 $\stackrel{\text{}}{\longrightarrow}$ $\stackrel{\text{}}{\longrightarrow$

Scheme 1. Reagents and conditions: Titanium catalyst (10 wt %), *p*-TsNH₂ (1.1 equiv), NBS (1 equiv), CH₂Cl₂, 25 °C, 14 h.

^{*} Corresponding author. Tel.: +91 20 25902174; fax: +91 20 25902676. E-mail address: a.sudalai@ncl.res.in (A. Sudalai).

Table 1Titanium-catalyzed regiospecific aminobromination of styrene^a

No	Catalyst	Solvent	Yield ^b (%)	
			1	2
1	No catalyst	CH ₂ Cl ₂	_	17
2	TiO ₂	CH_2Cl_2	_	38
3	Titanium silicalite	CH_2Cl_2	_	23
4	Ti (OPr ⁱ) ₄	CH_2Cl_2	_	24
5	Titanium superoxide	CH_2Cl_2	81	_
6	Titanium superoxide	CHCl₃	61	_
7	Titanium superoxide	EDC	58	_

Reaction conditions: ^aolefin (3 mmol), p-TsNH₂ (3.3 mmol), N-bromosuccinimide (3 mmol), catalyst (10 wt %), CH₂Cl₂ (20 mL), 25 °C, 14 h.

for the aminobromination of olefins turned out to be: olefin (3 mmol), *p*-TsNH₂ (3.3 mmol), NBS (3 mmol) and titanium superoxide (10 wt %) in CH₂Cl₂ at ambient conditions.

In order to establish its scope, various olefins were subjected to aminobromination; the results of which are presented in Table 2. It is evident that several styrenic substrates including indene underwent the aminobromination regiospecifically to produce the corresponding anti-Markovnikov^{14b} products. No traces of Markovnikov products were, however, observed in the crude product sample (as confirmed by ¹H and ¹³C NMR and GC analysis). Interestingly, electron-rich olefins gave relatively higher yields of products as compared to electron-deficient olefins. This may be ascribed to the benzylic radical, which abruptly increases its reactivity, thereby resulting in high yields of the aminobrominated product. Also aliphatic olefins underwent aminobromination smoothly to give 1.2bromoamines in good yields. After the reaction was complete, solid titanium superoxide was recovered by simple filtration, which on subsequent reuse with styrene as substrate was found to catalyze the aminobromination process with moderate yield (58%). Notably, substrates like indene, cyclohexene, and cyclooctene gave the corresponding aminobrominated products with high anti-selectivity > 99:1 (Table 2, entries 10, 12, and 13).

Having established the aminobromination of simple olefins, we turned our attention to α,β -unsaturated carbonyl compounds **3a–c** as substrates and the results are presented in Table 3. For α,β -unsaturated esters or ketones, the reaction was found to be relatively slow and gave poor yields of the expected bromoaminated products **4a–c** (Table 3, entries 1 and 2). However, use of p-TsNBr $_2$ resulted in the formation of bromoamino ester **4c** in good yield.

A plausible mechanistic pathway is outlined in Figure 1 to explain the formation of anti-Markovnikov product. Firstly, p-toluenesulfonamide reacts with NBS to form p-TsNH-Br³ followed by its interaction with titanium superoxide which facilitates the polarization of the NH-Br bond homolytically. Since the catalyst possesses a stable radical, interaction of which with p-Ts-NHBr probably generates p-TsNH radical, which in turn adds onto styrene regiospecifically at the homobenzylic position to form benzvlic radical. The recombination of this radical with Br radical leads to anti-Markovnikov product. The radical pathway proposed here has been supported by the trapping experiment with TEM-PO,¹⁶ which failed to produce the corresponding haloamine. In the case of other titanium salts, the formation of Markovnikov product 2 can be reasoned on the basis of the formation of bromonium ion followed by its preferential opening at the benzylic position with p-toluenesulfonamide.

In conclusion, we have described a titanium superoxide-catalyzed regiospecific aminobromination of styrenic and other conjugated olefins to give exclusively *anti*-Markovnikov products in high yields using *p*-TsNH₂ and NBS as amine and bromine sources,

Table 2Titanium superoxide-catalyzed aminobromination of olefins^a

1 Styrene	No	Substrate	Product ^b	Yield ^c (%)	anti:syn
2 4-Methylstyrene H ₀ C Br NHTS 67 4 4-Bromostyrene GI Br NHTS 69 5 2-Chlorostyrene GI Br NHTS 68 6 4-Fluorostyrene GI Br NHTS 68 7 4-Chloromethylstyrene Ph Br NHTS 67 8 α-Methylstyrene Ph NHTS 30 9 trans-Stilbene Ph NHTS 10 Indene CH ₃ -(CH ₂) ₅ -CH-CH ₂ NHTS Fr RBr 12 Cyclohexene Br NHTS 66 299: 1	1	Styrene	↓ NHTe	81 (58) ^d	
3 4-Methoxystyrene MeO 4 4-Bromostyrene Br NHTS 69 5 2-Chlorostyrene CI Br NHTS 68 6 4-Fluorostyrene F NHTS 7 4-Chloromethylstyrene Ph Br NHTS 67 8 α-Methylstyrene Ph NHTS 67 10 Indene Ph NHTS Br NHTS 61 11 1-Octene CH ₃ -(CH ₂) ₅ -CH-CH ₂ NHTS 65 PH 13 Cyclooctene PH NHTS	2	4-Methylstyrene	NHTs	86	
4 4-Bromostyrene Br NHTs 69 5 2-Chlorostyrene GI Br NHTs 68 6 4-Fluorostyrene FF NHTs 78 7 4-Chloromethylstyrene Ph Br NHTs 67 8 α-Methylstyrene Ph Ph NHTs 30 9 trans-Stilbene Ph Ph NHTs 10 Indene CH ₃ -(CH ₂) ₅ -CH-CH ₂ NHTs FF NHTs 11 1-Octene CH ₃ -(CH ₂) ₅ -CH-CH ₂ NHTs FF NHTs 12 Cyclohexene Ph Ph NHTs FF NHTS FF NHTS A 10 September 1 September 1 September 2 September 2 September 2 September 2 September 3	3	4-Methoxystyrene	NHTs	67	
5 2-Chlorostyrene 6 4-Fluorostyrene 7 4-Chloromethylstyrene 8 α-Methylstyrene 9 trans-Stilbene Ph	4	4-Bromostyrene	NHTs	69	
6 4-Fluorostyrene F 7 4-Chloromethylstyrene R 8 α-Methylstyrene Ph Br NHTS 78 8 α-Methylstyrene Ph Ph NHTS 10 Indene Br CH ₃ -(CH ₂) ₅ -CH-CH ₂ NHTS R Ph SH 11 1-Octene CH ₃ -(CH ₂) ₅ -CH-CH ₂ NHTS R 12 Cyclohexene Br CH ₃ -(CH ₂) ₅ -CH-CH ₂ NHTS R SH NHTS 13 Cyclooctene R R SH NHTS Ph NHTS R SH NHTS Ph NHTS R SH NHTS Ph NHTS	5	2-Chlorostyrene		68	
7 4-Chloromethylstyrene 8 α-Methylstyrene Ph	6	4-Fluorostyrene		78	
9 trans-Stilbene Ph	7	4-Chloromethylstyrene	NHTs	67	
9 trans-Stilbene Ph	8	α-Methylstyrene	Ph NHTs	30	
10 Indene	9	trans-Stilbene	Ph	61	
11 1-Octene CH ₃ -(CH ₂) ₅ -CH-CH ₂ NHTs 66 12 Cyclohexene 65 >99: 1 13 Cyclooctene 72 >99: 1	10	Indene		80	>99: 1
12 Cyclohexene 65 >99: 1 13 Cyclooctene 72 >99: 1 Br "NHTs Br "NHTs	11	1-Octene		66	
13 Cyclooctene 72 >99: 1 Br	12	Cyclohexene		65	>99: 1
	13	Cyclooctene		72	>99: 1
	14	Vinylcyclohexane		63	

Reaction conditions: a olefin (3 mmol), p-TsNH $_2$ (3.3 mmol), N-bromosuccinimide (3 mmol), titanium superoxide (10 wt %), CH $_2$ Cl $_2$ (20 mL), 25 °C, 14 h.

- ^b Products were characterized by mp, IR, ¹H and ¹³C NMR, and elemental analysis.
- ^c Isolated yield after chromatographic purification.
- ^d Yield in parentheses refers to use of recovered catalyst.

^b Isolated yield after chromatographic purification.

Table 3 Titanium superoxide-catalyzed regiospecific aminobromination of α,β -unsaturated carbonyl compounds^a

No	R	R^1	Amine source	Yield ^{b,c} (%) 4a-c
a	Н	OMe	p-TsNH ₂	20
b	Cl	Ph	p-TsNH ₂	21
С	Cl	Ph	p-TsNBr ₂	68

Reaction conditions: aunsaturated ester (3 mmol), p-TsNH2 (3.3 mmol), N-bromosuccinimide (3 mmol), titanium superoxide (10 wt %), CH_2Cl_2 (20 mL), 25 °C, 18 h.

- Products were characterized by mp, IR, ¹H and ¹³C NMR, and elemental analysis.
- Isolated yield after chromatographic purification.

Figure 1. Titanium superoxide catalytic cycle for bromoamination process.

respectively under ambient conditions. The protocol makes use of stable and readily accessible titanium superoxide as solid catalyst for the aminobromination process.

Acknowledgments

T.M.S. and P.K. thank the Department of Science and Technology, New Delhi for financial support (No. SR/S1/OC-72/2006). The authors are also thankful to Dr. B.D. Kulkarni, Dy. Director, for his constant encouragement.

References and notes

- 1. (a) Kemp, J. E. G., In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 3, p 471; (b) Theilacker, W.; Wessel, H. Liebigs Ann. Chem. **1967**, 703, 34; (c) Ueno, Y.; Takemura, Y.; Ando, Y.; Terauchi, H. Chem. Pharm. Bull. 1967, 15, 1193; (d) Daniher, F. A.; Melchior, M. T.; Butler, P. E. Chem. Commun. 1968, 931; (e) Gao, G.-Y.; Harden, J. D.; Zhang, X. P. Org. Lett. 2005, 7, 3191; (f) Yeung, Y.-Y.; Hong, S.; Corey, E. J. J. Am. Chem. Soc. 2006, 128 6310
- (a) Manzoni, M. R.; Zabawa, T. P.; Kasi, D.; Chemler, S. R. Organometallics 2004, 23, 5618; (b) Michael, F. E.; Sibbald, P. A.; Cochran, B. M. Org. Lett. 2008, 10, 793.
- Thakur, V. V.; Talluri, S. K.; Sudalai, A. Org. Lett. **2003**, 5, 861
- (a) Li, G.; Wei, H.-X.; Kim, S. H.; Neighbors, M. Org. Lett. 1999, 1, 395; (b) Li, G.; Wei, H.-X.; Kim, S. H. *Org. Lett.* **2000**, 2, 2249; (c) Albone, D. P.; Aujla, P. S.; Taylor, P. C.; Challenger, S.; Derrick, A. M. J. Org. Chem. 1998, 63, 9569; (d) Ando, T.; Minakata, S.; Ryu, I.; Komatsu, M. Tetrahedron Lett. 1998, 39, 309; (e) Li. G.: Wei, H.-X.; Kim, S. H. Tetrahedron **2001**, 57, 8407; (f) Zhi, S.; Han, J.; Lin, C.; An, G.; Pan, Y.; Li, G. Synthesis **2008**, 10, 1570; (g) Chen, Z.-G.; Wei, J.-F.; Li, R. T.; Shi, X.-Y.; Zhao, P.-F. J. Org. Chem. 2009, 74, 1371.
- Yadav, J. S.; Subba Reddy, B. V.; Chary, D. N.; Chandrakanth, D. Tetrahedron Lett. 2009. 50. 1136.
- (a) Li, Q.; Shi, M.; Timmons, C.; Li, G. Org. Lett. 2006, 8, 625; (b) Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Synlett **2008**, 2667.
- Zwierzak, A.; Osowska, K. Angew. Chem., Int. Ed. Engl. 1976, 15, 302.
- Yeung, Y.-Y.; Gao, X.; Corey, E. J. J. Am. Chem. Soc. **2006**, 128, 9644. Wei, H.-X.; Kim, S. H.; Li, G. Tetrahedron **2001**, 57, 3869.
- (a) Wang, G.-W.; Wu, X.-L. Adv. Synth. Catal. 2007, 349, 1977; (b) Wu, X.-L.; Xia, J.-J.; Wang, G.-W. Org. Biomol. Chem. 2008, 6, 548; (c) Xia, J.-J.; Wu, X.-L.; Wang, G.-W. ARKIVOC **2008**, xvi, 22; (d) Fan, R.; Wen, F.; Qin, L.; Pu, D.; Wang, B. Tetrahedron Lett. **2007**, 48, 7444.
- (a) Kharasch, M. S.; Priestley, H. M. J. Am. Chem. Soc. 1939, 61, 3425; (b) Chabrier, F. Ann. Chem. 1942, 17, 353; (c) Foglia, T. A.; Swern, D. J. Org. Chem. 1966, 31, 3625; (d) Schrage, K. Tetrahedron Lett. 1966, 7, 5795; (e) Sliwinska, A.; Zwierzak, A. Tetrahedron Lett. 2003, 44, 9323; (f) Sliwinska, A.; Zwierzak, A. Tetrahedron 2003, 59, 5927; (g) Klepacz, A.; Zwierzak, A. Tetrahedron Lett. 2001, 42, 4539; (h) Lessard, J.; Driguez, H.; Vermes, J.-P. Tetrahedron Lett. 1970, 11, 4887; (i) Ponsold, K.; Ihn, W. Tetrahedron Lett. 1970, 11, 1125.
- (a) Wu, X.-L.; Wang, G.-W. J. Org. Chem. 2007, 72, 9398; (b) Han, J.-H.; Zhi, S.-J.; Wang, L.-Y.; Pan, Y.; Li, G. Eur. J. Org. Chem. 2007, 1332.
- 13. Xu, X.; Kotti, S. R. S.; Liu, J.; Cannon, J. F.; Headley, A. D.; Li, G. Org. Lett. 2004, 6, 4881
- (a) Preparation of titanium superoxide:Aq 50% H₂O₂ (5.98 g, 0.175 mol) was added slowly to a solution of titanium isopropoxide (5.0 g, 0.0175 mol) in anhydrous MeOH (50 ml) over 40 min under N2 with stirring at room temperature. The yellow precipitate formed was collected by filtration on a sintered funnel, washed with anhydrous methanol, and dried at room temperature. Yield: 3.94 g (98%).(b) Typical experimental procedure for aminobromination of styrene:To a stirred solution of styrene (0.312 g, 3.0 mmol), titanium superoxide (0.030 g, 10 wt %) and p-TsNH $_2$ (0.564 g, 3.3 mmol) in 25 mL of dry dichloromethane was added NBS (0.534 g, 3.0 mmol) slowly using a solid addition funnel. The reaction mixture was stirred further at 25 °C for 14 h. When TLC showed the completion of the reaction, the catalyst was filtered off and the filtrate was diluted with water, extracted with CH_2Cl_2 (20 × 3 mL), and washed with brine. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the crude product, which was purified by column chromatography packed with silica gel using pet ether and EtOAc as eluents to afford the pure bromoaminated product.
- (a) Dewkar, G. K.; Nikalje, M. D.; Sayyed, I. A.; Paraskar, A. S.; Jagtap, H. S.; Sudalai, A. *Angew. Chem., Int. Ed.* **2001**, 40, 405; (b) Dewkar, G. K.; Shaikh, T. M.; Pardhy, S.; Kulkarni, S. S.; Sudalai, A. Indian J. Chem. B 2005, 44, 1530.
- (a) Connolly, T. J.; Baldovi, M. V.; Mohtat, N.; Scaiano, J. C. Tetrahedron Lett. 1996, 37, 4919; (b) Kim, T.-H.; Dokolas, P.; Feeder, N.; Giles, M.; Holmes, A. B.; Walthar, M. Chem. Commun. 2000, 2419; (c) Beckwith, A. L. J.; Bowry, V. W.; Moad, G. J. Org. Chem. 1988, 53, 1632.