Contents lists available at ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

Synthesis of N-substituted iminosugars from 2'-carbonyl-C-glycofuranosides

Hairong Luo^{a,c}, Wei Zou^b, Huawu Shao^{a,*}

^a Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
^b Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
^c Graduate School of Chinese Academy of Sciences, Shijingshan, Yuquan Road, 19(A), Beijing 100049, China

ARTICLE INFO

ABSTRACT

excellent yields.

Article history: Received 30 April 2009 Received in revised form 19 August 2009 Accepted 20 August 2009 Available online 2 September 2009

Keywords: Iminosugar Intramolecular Hetero-Michael addition Elimination

1. Introduction

Iminosugars are a family of polyhydroxylated heterocycles carrying nitrogen at the position of the endocyclic oxygen atom.¹ These compounds represent one of the most interesting classes of glycomimetics.^{2,3} The scope of the biological activities of iminosugars, initially known as potent glycosidase inhibitors, has considerably widened in recent years, as they have been found to be inhibitors of glycosyl transferases, glycogen phosphorylase, nucleoside-processing enzymes, metalloproteinases⁴ and potential therapeutic candidates for the treatment of diabetes, cancer, viral infection and other diseases.^{2,5-7} The deoxynojirimycin (DNJ) (1) (Fig. 1) family comprises potent inhibitors of the α -glucosidase mediated by iminosugars, especially N-alkylated piperidinols. For example, N-alkylated piperidinols were shown to exhibit potent antiviral activities and to have a protective effect in patients with Gaucher's disease, an inherited lysosomal disorder. These compounds are therefore of growing interest as new therapeutic leads, and two simple iminosugar derivatives have already been approved for therapeutic purposes: GlysetTM (N-hydroxyethyl-1deoxynojirimycin, 2) for the treatment of complications associated with type II diabetes,^{8,9} and ZavescaTM (N-butyl-1-deoxynojirimycin, **3**) for the treatment of Gaucher disease.¹⁰ The initial results were fairly promising as patients have shown clear improvement in organ volume as well as in haematological variables, which necessitated further exploration and investigation of N-alkylated iminosugars.^{11–13} Considering the high potential of iminosugars

0008-6215/\$ - see front matter © 2009 Published by Elsevier Ltd. doi:10.1016/j.carres.2009.08.024

as carbohydrate mimics, the design of a general and efficient approach to synthesize N-alkylated iminosugars appears to be an important issue yet to be solved. Recently, many such methods attempting to synthesize N-substituted iminosugars have emerged,^{14–20} which may lead to superior inhibitors when the anomeric carbon in the piperidine rings is substituted.^{21,22} In view of the high therapeutic and industrial potential of N-alkylated iminosugars, and as a part of our continuing interest in their synthesis,^{23–28} we hereby report a practical approach for the synthesis of hitherto unknown N-substituted iminosugars.

Under basic conditions 2'-carbonyl 5-N-substituted-C-glycofuranosides undergo a tandem β -elimination

and intramolecular hetero-Michael addition to form N-substituted iminosugar derivatives in good to

Previously, we had found that 1-C-(2'-oxoalkyl)-glycosides form acyclic α , β -conjugates following base-mediated beta elimination,^{23,24} which enabled an intramolecular addition of an amino group to form an iminosugar moiety.^{25–28} Thus, we hypothesized that 1-C-(2'-oxoalkyl)-glycosides with an N-substituted amino group could also undergo a similar intramolecular Michael addition to produce N-substituted iminosugars. Additionally, iminosugars with different N-substituted amino groups could be further prepared for various iminosugar library constructions.

1 R = H (DNJ) 2 R = $(CH_2)_2OH$ Miglitol (Glyset) 3 R = Bu (Zavesca)

© 2009 Published by Elsevier Ltd.

In this study, we report our results concerning the synthesis of N-substituted iminosugars and their analogues. The approach is outlined in Scheme 1. The strategy requires a tandem ring-opening β -elimination, which produces an acyclic α , β -conjugated ketone as a Michael acceptor, and an intramolecular hetero-Michael addition to form an N-substituted iminosugar intermediate under basic conditions.

2. Results and discussion

The synthesis of N-substituted iminosugars 8 employed the introduction of 5-substituted amino and 1-C-2'-oxoalkyl groups (Scheme 2). Starting from p-ribose, 5-azido-C-glycoside 2 was conveniently prepared using our previously reported methods.²³ Reduction of the 5-azido group in compound 2 with triphenylphosphine successfully produced the corresponding 5-amino-C-glycoside 3 in 78% yield. Subsequent treatment of 3 with various aldehydes and NaBH₄ generated the corresponding 5-N-substituted C-glycofuranosides 4 (a-i) (Table 1). In addition, 5-N-substituted C-glycofuranosides 4 (a-c) can also be neatly synthesized by the nucleophilic substitution of mesylate **1**²⁹⁻³² using propylamine (a), butylamine (b) and hexylamine (c). Protection of the amino function as tertbutyloxycarbamate (Boc) afforded 5 (a-i) in quantitative yield.

Subsequently the 1-*C*-allyl group was oxidized into glycoside (**6a–i**) with $Hg(OAc)_2$ and Jones reagent.^{29–32} As expected, deprotection of the amine (giving 7), followed by a base-mediated Michael addition, produced a pair of stereoisomers of 2'-ketonyl iminosugar. Then the 4-OH was protected by Ac₂O/Py to afford 8 (see Table 1). The configurations at C-1 were assigned by NMR and NOE analyses.

In order to investigate the influence of base to product stereoselectivity, we used 1-C-[5-(N-benzyl, N-boc)amino-2,3-di-O-benzyl-5-deoxy- α -D-ribofuranosyl]propan-2-one (**6d**) as the substrate (Scheme 3). After examining various base/solvent combinations, the ratio of α - and β -N-substituted iminosugar (8d) was summarized (see Table 2).

Table 1

Synthesis of compound 6 and compound 8

Entry	R ¹	Compound 6	Yield ^a (%)	Compound 8	Yield ^b (%)	Ratio 8α/8 β
1	C ₃ H ₇	6a	78	8a	53	4:6
2	C_4H_9	6b	81	8b	55	3:7
3	C ₆ H ₁₃	6c	75	8c	51	4:6
4	Bn	6d	55	8d	52	1:1
5	p-CH₃Bn	6e	52	8e	56	1:1
6	p-NO ₂ Bn	6f	50	8f	50	4:6
7	p-Cl–Bn	6g	58	8g	58	3:7
8	o-Cl–Bn	6h	50	8h	50	4:6
9	Thiophen-2- ylmethyl	6 i	53	8i	51	1:1

^a Isolated yield, **6a-c** over three steps from compound **1**, **6d-i** over three steps from compound 3.

Isolated yield, over three steps.

Scheme 3. Synthesis of 1-C-(4-O-acetyl-2.3-di-O-benzyl-5-benzylamino-5-deoxyp-ribopyranosyl) propan-2-one.

Table 2

Synthesis of 1-C-(4-O-acetyl-2,3-di-O-benzyl-5-benzylamino-5-deoxy-D-ribopyranosvl)propan-2-one.

Entry	base/solvent	Ratio (α/β)	Product (%) ^a
1	NaHCO ₃ /MeOH	1:1	52
2	K ₂ CO ₃ /MeOH	4:6	72
3	Na ₂ CO ₃ /MeOH	4:6	55
4	K ₂ CO ₃ /MeCN	4:6	58
5	TEA/MeOH	4:6	56
6	NaOH/MeOH	3:7	66
7	KOH/MeOH	3:7	52
8	NaOMe/MeOH	3:7	80
8	NaOMe/MeOH	3:7	80

^a Isolated yield.

In conclusion, we have developed an efficient method for the synthesis of N-substituted iminosugars from 2'-carbonyl 5-Nsubstituted-*C*-glycofuranosides, which undergo a tandem β-elimination and intramolecular hetero-Michael addition.

p-CH₃Bn, p-NO₂Bn, p-Cl-Bn, o-Cl-Bn, thiophen-2-ylmethyl. 8

3. Experimental

3.1. General methods

All reagents were obtained from commercial suppliers and were used without further purification. CH_2Cl_2 was distilled over CaH₂. MeOH was distilled over magnesium and iodine. Reactions were monitored by thin-layer chromatography (TLC) using commercial silica gel HSGF254 plates. TLC spots were viewed under ultraviolet light and by heating the plate after treatment with a 5% sulfuric acid in ethanol (v/v). Product purification by gravity column chromatography was performed using commercial silica gel HG/T2354-92 (200–300 mesh). ¹H NMR and ¹³C NMR (600 and 150 MHz, respectively) spectra were recorded in CDCl₃, and TMS was used as an internal standard. HRESIMS spectra were recorded on a Bio-TOF Q instrument. Optical rotations were acquired on a Perkin–Elmer 341 digital polarimeter.

3.2. General procedure for the preparation of compounds 6a-c

Compound **1** (50.0 mg, 1.0 equiv) and RNH_2 (5.0 equiv) $(R = C_3H_7, C_4H_9 \text{ and } C_6H_{13})$ were dissolved in DMF (1 mL). Then the reaction mixture was stirred at 80 $^\circ \text{C}$, until the reaction was shown by TLC to be completed. The reaction was then quenched by the addition of water, and the aqueous solution was extracted three times with EtOAc. The combined organic solution was washed with water, satd NaHCO₃ and brine, then dried over MgSO₄ and concentrated. The residue was dissolved in 2 mL of CH₂Cl₂. Addition of triethylamine (50.0 equiv) was followed by addition of di-tert-butyldicarbonate (3.0 equiv). The reaction mixture was stirred for 16 h. All reagents and solvents were removed under reduced pressure to afford crude product. The crude product and Hg(OAc)₂ (30 mg) were dissolved in 2 mL of 4:1 acetone-water. The solution was cooled to 0 °C. Fresh Jones' reagent (0.6 mL, 5 mmol) was added dropwise. The reaction mixture was stirred until the reaction was deemed completed by TLC analysis. The reaction mixture was poured into water (15 mL) and extracted by CH₂Cl₂, and then organic phase was washed with water and brine. Purification by column chromatography (4:1 petroleum-EtOAc) gave **6a–c** as syrups.

3.2.1. 1-C-[2,3-Di-O-benzyl-5-deoxy-5-(N-propyl, N-boc)amino- α -D-ribofuranosyl]propan-2-one (6a)

Yield: 78% (over three steps). $[\alpha]_D^{25}$ 10.0 (*c* 0.1, CHCl₃); ¹H NMR (CDCl₃): δ 7.34–7.28 (m, 10H, Ph), 4.70 (m, 1H, H-4), 4.61–4.42 (m, 4H, PhCH₂), 4.17 (m, 1H, H-1), 4.08 (dd, 1H, *J* = 4.6, 4.5 Hz, H-2), 3.90 (m, 1H, H-3), 3.48–3.09 (m, 4H, H-5a, H-5b, N–CH₂), 2.86–2.80 (m, 2H, H-1'a, H-1'b), 2.07 (s, 3H, COCH₃), 1.54–1.48 (m, 2H, CH₂), 1.43 [s, 9H, C(CH₃)₃], 0.83 (t, 3H, *J* = 7.5 Hz, CH₃); ¹³C NMR (CDCl₃): δ 207.5 (C=O), 156.0 (–O–C=O), 138.1 (Ar), 128.4 (Ar), 128.3 (Ar), 127.8 (Ar), 127.7 (Ar), 81.2 (C-2), 79.7 (C-3), 79.3 (C-4), 78.1(C-1), 75.5 [*C*(CH₃)₃], 73.4 (PhCH₂), 72.8 (PhCH₂), 49.7 (C-6), 48.6 (C-5), 44.1 (C-1'), 30.7 (COCH₃), 28.4 [*C*(CH₃)₃], 21.5 (CH₂), 11.2 (CH₃). HRESIMS: calcd for C₃₀H₄₁NNaO₆ [M+Na]⁺: 534.2826; found: 534.2829.

3.2.2. 1-C-[2,3-Di-O-benzyl-5-(*N*-butyl, *N*-boc)amino-5-deoxy- α -D-ribofuranosyl]propan-2-one (6b)

Yield: 81% (over three steps). $[\alpha]_D^{25}$ 9.5 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃): δ 7.34–7.28 (m, 10H, Ar), 4.70 (m, 1H, H-4), 4.61–4.37 (m, 4H, PhCH₂), 4.16 (m, 1H, H-1), 4.08 (dd, 1H, *J* = 4.7, 4.4 Hz, H-2), 3.91 (m, 1H, H-3), 3.48–3.09 (m, 4H, H-5a, H-5b, N–CH₂), 2.87–2.78 (m, 2H, H-1'a, H-1'b), 2.07 (s, 3H, COCH₃), 1.43 [s, 9H, C(CH₃)₃], 1.28–1.22 (m, 4H, CH₂CH₂), 0.88 (t, 3H, *J* = 7.4 Hz, CH₃); ¹³C NMR (CDCl₃): δ 207.4 (C=O), 156.0 (–O–C=O), 138.1 (Ar), 128.4 (Ar), 128.3 (Ar), 127.8 (Ar), 127.7 (Ar), 81.2 (C-2), 79.7 (C-

3), 79.3 (C-4), 78.1(C-1), 75.5 [*C*(CH₃)₃], 73.4 (PhCH₂), 72.8 (PhCH₂), 48.6 (C-6), 47.7 (C-5), 44.1 (C-1'), 30.7 (COCH₃), 30.3 (CH₃CH₂CH₂), 28.4 [*C*(CH₃)₃], 19.9 (CH₃CH₂), 13.8 (CH₃). HRESIMS: calcd for C₃₁H₄₃NNaO₆ [M+Na]⁺: 548.2983, found: 548.2971.

3.2.3. 1-C-[2,3-Di-O-benzyl-5-deoxy-5-(N-hexyl, N-boc)amino- α -D-ribofuranosyl]propan-2-one (6c)

Yield: 75% (over three steps). $[\alpha]_D^{25}$ 8.7 (*c* 0.2, CHCl₃); ¹H NMR (CDCl₃): δ 7.34–7.28 (m, 10H, Ph), 4.70 (m, 1H, H-4), 4.61–4.36 (m, 4H, PhCH₂), 4.16 (m, 1H, H-1), 4.08 (dd, 1H, *J* = 4.6, 4.3 Hz, H-2), 3.92 (m, 1H, H-3), 3.47–3.09 (m, 4H, H-5a, H-5b, N–CH₂), 2.86–2.77 (m, 2H, H-1'a, H-1'b), 2.07 (s, 3H, COCH₃), 1.43 [s, 9H, C(CH₃)₃], 1.29–1.22 [m, 8H, (CH₂)₄], 0.88 (t, 3H, *J* = 6.5 Hz, CH₃); ¹³C NMR (CDCl₃): δ 207.4 (C=O), 156.0 (–O–C=O), 138.1 (Ar), 128.4 (Ar), 128.3 (Ar), 127.8 (Ar), 127.7 (Ar), 81.2 (C-2), 79.7 (C-3), 79.3 (C-4), 78.1 (C-1), 75.5 [C(CH₃)₃], 73.4 (PhCH₂), 72.8 (PhCH₂), 48.8 (C-6), 48.0 (C-5), 44.1 (C-1'), 31.5, 30.7 (COCH₃), 28.4 [C(CH₃)₃], 28.1, 26.5, 22.6, 13.9 (CH₃). HRESIMS: calcd for C₃₃H₄₇NO₆ [M+H]⁺: 553.3483, found: 553.3472.

3.3. General procedure for the preparation of compound 6d-i

 $MgSO_4$ (anhyd, 400 mg) was added to a solution of amine **3** (50 mg, 0.125 mmol, 1.0 equiv) and aldehyde (1.1 equiv) in 2 mL of MeOH. The reaction mixture was sealed and stirred at ambient temperature for 16 h. Filtration through Celite and solvent elution (2 mL, MeOH) left a clear yellow solution that was treated with NaBH₄ (19 mg, 2.0 equiv) at 0 °C. After 3 h, the reaction was quenched with 3 mL of acetone and 3 mL of water and then extracted with 15 mL of EtOAc. The organic layer was dried over MgSO₄, filtered and concentrated. The resulting residual oil was dissolved in 2 mL CH₂Cl₂. Addition of triethylamine (50.0 equiv) was followed by the addition of di-tert-butyldicarbonate (3.0 equiv). The reaction mixture was stirred for 16 h. The solvent was removed under reduced pressure to afford the crude product. The crude product and $Hg(OAc)_2$ (30 mg) were dissolved in 2 mL 4:1 acetone-water. The solution was cooled to 0 °C. Fresh Jones' reagent (0.6 mL, 5 mmol) was added dropwise. The reaction mixture was stirred until the reaction was shown by TLC to be completed. The reaction mixture was poured into water (15 mL) and was extracted by CH₂Cl₂. The organic phase was washed with water and brine. Purification by column chromatography (4:1petroleum-EtOAc) gave 6 as a syrup.

3.3.1. 1-C-[2,3-Di-O-benzyl-5-(N-benzyl, N-boc)amino-5-deoxy- α -p-ribofuranosyl]propan-2-one (6d)

Yield: 55% (over three steps). $[\alpha]_D^{25}$ 13.8 (*c* 0.8, CHCl₃); ¹H NMR (CDCl₃): δ 7.34–7.28 (m, 15H, Ar), 4.72 (m, 1H, H-4), 4.60–4.34 (m, 6H, ArCH₂), 4.22 (d, 1H, *J*=4.1 Hz, H-1), 4.05 (d, 1H, *J*=4.3 Hz, H-2), 3.80 (m, 1H, H-3), 3.50–2.787 (m, 4H, H-5a, H-5b, N–CH₂), 2.07 (s, 3H, COCH₃), 1.43 [s, 9H, C(CH₃)₃]; ¹³C NMR (CDCl₃): δ 207.4 (C=O), 156.0 (–O–C=O), 138.5 (Ar), 138.2 (Ar), 138.0 (Ar), 137.7 (Ar), 128.4 (Ar), 128.3 (Ar), 127.8 (Ar), 127.2 (Ar), 81.4 (C-2), 79.9 (C-3), 79.5 (C-4), 77.9 (C-1), 75.5 [*C*(CH₃)₃], 73.4 (PhCH₂), 72.9 (PhCH₂), 51.3 (PhCH₂–N), 48.6 (C-6), 48.1 (C-5), 44.0 (C-1'), 30.7 (COCH₃), 28.4 [*C*(CH₃)₃]. HRESIMS: calcd for C₃₄H₄₁NNaO₆ [M+Na]⁺: 582.2826, found: 582.2824.

3.3.2. 1-C-[2,3-Di-O-benzyl-5-deoxy-5-(*N*-*p*-methylbenzyl, *N*-boc)amino- α -p-ribofuranosyl]propan-2-one (6e)

Yield: 52% (over three steps). $[\alpha]_D^{25}$ 13.8 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃): δ 7.33–7.28 (m, 10H, Ar), 7.10–7.08 (m, 4H, Ar), 4.71 (m, 1H, H-4), 4.59–4.34 (m, 6H, ArCH₂), 4.22 (br s, 1H, H-1), 4.05 (d, 1H, *J* = 4.3 Hz, H-2), 3.85 (m, 1H, H-3), 3.47–2.77 (m, 4H, H-5a, H-5b, N–CH₂), 2.31 (s, 3H, *p*-CH₃–Ph), 2.07 (s, 3H, COCH₃), 1.43 [s, 9H, C(CH₃)₃]; ¹³C NMR (CDCl₃): δ 207.4 (C=O), 156.0 (–O–C=O),

138.2 (Ar), 136.6 (Ar), 135.3 (Ar), 129.1 (Ar), 128.4 (Ar), 128.3 (Ar), 127.8 (Ar), 127.7 (Ar), 81.4 (C-2), 79.9 (C-3), 79.6 (C-4), 78.0 (C-1), 75.5 [C(CH₃)₃], 73.4 (PhCH₂), 72.8 (PhCH₂), 50.9 (p-CH₃-PhCH₂), 48.4 (C-6), 47.8 (C-5), 44.0 (C-1'), 30.7 (COCH₃), 28.4 [C(CH₃)₃], 21.0 (p-CH₃-Ph). HRESIMS: calcd for C₃₅H₄₃NNaO₆ [M+Na]⁺: 596.2983, found: 596.2966.

3.3.3. 1-C-[2,3-Di-O-benzyl-5-deoxy-5-(*N*-*p*-nitrobenzyl, *N*-boc)amino-α-D-ribofuranosyl]propan-2-one (6f)

Yield: 50% (over three steps). $[α]_D^{25}$ 16.6 (*c* 0.3, CHCl₃); ¹H NMR (CDCl₃): δ 8.15 (d, 2H, *J* = 8.1 Hz, Ar), 7.35–7.28 (m, 12H, Ar), 4.76 (m, 1H, H-4), 4.64–4.34 (m, 6H, ArCH₂), 4.20 (m, 1H, H-1), 4.05 (d, 1H, *J* = 4.3 Hz, H-2), 3.81 (m, 1H, H-3), 3.59–2.76 (m, 4H, H-5a, H-5b, N–CH₂), 2.07 (s, 3H, COCH₃), 1.43 [s, 9H, C(CH₃)₃]; ¹³C NMR (CDCl₃): δ 207.0 (C=O), 155.6 (–O–C=O), 147.1 (Ar), 138.1(Ar), 128.4 (Ar), 128.3 (Ar), 127.8 (Ar), 127.5 (Ar), 123.6 (Ar), 81.7 (C-2), 80.5 (C-3), 79.3 (C-4), 77.6 (C-1), 75.6 [*C*(CH₃)₃], 73.6 (PhCH₂), 73.0 (PhCH₂), 51.2 (*p*-NO₂–PhCH₂), 50.3 (C-6), 48.9 (C-5), 43.8 (C-1'), 30.7 (COCH₃), 28.3 [C(CH₃)₃]. HRESIMS: calcd for C₃₄H₄₀N₂NaO₈ [M+Na]⁺: 627.2677, found: 627.2649.

3.3.4. 1-C-[2,3-Di-O-benzyl-5-(*N*-*p*-chlorobenzyl, *N*-boc)amino-5-deoxy-α-p-ribofuranosyl]propan-2-one (6g)

Yield: 58% (over three steps). $[\alpha]_D^{25}$ 12.5 (c 0.4, CHCl₃); ¹H NMR (CDCl₃): δ 7.34–7.27 (m, 12H, Ar), 7.15–7.12 (m, 2H, Ar), 4.73 (m, 1H, H-4), 4.61–4.30 (m, 6H, ArCH₂), 4.19 (d, 1H, *J* = 4.3 Hz, H-1), 4.05 (d, 1H, *J* = 4.3 Hz, H-2), 3.85 (m, 1H, H-3), 3.50–2.77 (m, 4H, H-5a, H-5b, N–CH₂), 2.07 (s, 3H, COCH₃), 1.43 [s, 9H, C(CH₃)₃]; ¹³C NMR (CDCl₃): δ 207.2 (C=O), 155.8 (–O–C=O), 138.1(Ar), 137.9 (Ar), 137.6 (Ar), 137.1 (Ar), 136.8 (Ar), 132.7 (Ar), 128.5 (Ar), 128.4 (Ar), 128.3 (Ar), 127.8 (Ar), 81.5 (C-2), 80.1 (C-3), 79.4 (C-4), 77.8 (C-1), 75.5 [C(CH₃)₃], 73.5 (PhCH₂), 72.9 (PhCH₂), 50.8 (*p*-Cl–PhCH₂), 49.8 (C-6), 48.9 (C-5), 43.9 (C-1'), 30.7 (COCH₃), 29.6, 28.3 [C(CH₃)₃]. HRESIMS: calcd for C₃₄H₄₀ClNNaO₆ [M+Na]⁺: 616.2436, found: 616.2410.

3.3.5. 1-C-[2,3-Di-O-benzyl-5-(*N*-o-chlorobenzyl, *N*-boc)amino-5-deoxy-α-p-ribofuranosyl]propan-2-one (6h)

Yield: 50% (over three steps). $[\alpha]_D^{25}$ 19.6 (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 7.36–7.28 (m, 11H, Ar), 7.21–7.16 (m, 3H, Ar), 4.72 (m, 1H, H-4), 4.63–4.36 (m, 6H, ArCH₂), 4.22 (br s, 1H, H-1), 4.08 (d, 1H, *J* = 4.3 Hz, H-2), 3.86 (m, 1H, H-3), 3.57–2.76 (m, 4H, H-5a, H-5b, N–CH₂), 2.06 (s, 3H, COCH₃), 1.43 [s, 9H, C(CH₃)₃]; ¹³C NMR (CDCl₃): δ 207.0 (C=O), 156.0 (–O–C=O), 138.2 (Ar), 138.0 (Ar), 137.7 (Ar), 136.0 (Ar), 137.3 (Ar), 132.8 (Ar), 129.4 (Ar), 128.4 (Ar), 128.3 (Ar), 127.8 (Ar), 127.7 (Ar), 126.7 (Ar), 81.5 (C-2), 80.1 (C-3), 79.2 (C-4), 77.8 (C-1), 75.6 (C(CH₃)₃), 73.5 (PhCH₂), 72.9 (PhCH₂), 49.2 (*p*-Cl–PhCH₂), 48.7 (C-6), 48.3 (C-5), 44.0 (C-1'), 30.7 (COCH₃), 28.2[C(CH₃)₃]. HRESIMS: calcd for C₃₄H₄₀ClNNaO₆ [M+Na]⁺: 616.2436, found: 616.2455.

3.3.6. 1-C-[2,3-Di-O-benzyl-5-deoxy-5-[N-(thiophen-2-ylmethyl), N-boc]amino- α -p-ribofuranosyl]propan-2-one (6i)

Yield: 53% (over three steps). $[\alpha]_D^{25}$ 14.5 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃): δ 7.33–7.28 (m, 10H, Ph), 7.19 (m, 1H, thiophen), 6.90 (d, 2H, *J* = 4.2 Hz, thiophen), 4.76 (m, 1H, H-4), 4.71–4.49 (m, 4H, PhCH₂), 4.46–4.40 (m, 2H, thiophen-*CH*₂), 4.21 (d, 1H, *J* = 4.8 Hz, H-1), 4.05(d, 1H, *J* = 4.3 Hz, H-2), 3.86 (m, 1H, H-3), 3.48–2.78 (m, 4H, H-5a, H-5b, N–CH₂), 2.08 (s, 3H, COCH₃), 1.49 [s, 9H, C(CH₃)₃]; ¹³C NMR (CDCl₃): δ 207.3 (C=O), 155.4 (-O-C=O), 141.1 (thiophen C-1), 138.2 (Ar), 128.4 (Ar), 128.3 (Ar), 127.8 (Ar), 127.7 (Ar), 126.3 (thiophen), 125.0 (thiophen), 81.3 (C-2), 80.3 (C-3), 79.7 (C-4), 77.9 (C-1), 75.5 [C(CH₃)₃], 73.4 (PhCH₂), 72.9 (PhCH₂), 47.5 (C-6), 46.3 (C-5), 44.0 (C-1'), 30.7 (COCH₃), 28.4 [C(CH₃)₃]. HRESIMS: calcd for C₃₂H₃₉NNaO₆S [M+Na]⁺: 588.2390, found: 588.2391.

3.4. General procedure for the preparation of compounds 8a-i

Compound 6 (100 mg) was dissolved in 5 mL of CH₂Cl₂. The solution was cooled to 0 °C. Trifluoroacetic acid (1 mL, 13.5 mmol) was added slowly. After 1 h the solution was co-distilled with toluene $(2 \times 5 \text{ mL})$, and the crude product was then generally used directly in the next step. The crude product was then dissolved in MeOH (2 mL), followed by the addition of NaHCO₃ (50 mg). After 8 h, the reaction mixture was concentrated by rotary evaporation; then it was poured into water (10 mL) and was extracted by CH₂Cl₂. The organic phase was washed with water and brine, dried with MgSO4 and concentrated. The crude syrup was dissolved in 0.25 mL of pyridine, and 0.3 mL of Ac₂O was added. The solution was stirred at room temperature. After 20 h, the reaction mixture was poured into water (5 mL) and extracted by CH₂Cl₂. The organic phase was washed with satd NaHCO₃ and brine, dried with MgSO₄ and concentrated. The residual oil was purified by silica gel chromatography (3:1–1:1 petroleum–EtOAc) to afford products 8a-i.

3.4.1. 1-C-(4-O-Acetyl-2,3-di-O-benzyl-5-deoxy-5-propylamino-D-ribopyranosyl)propan-2-one (8a)

Yield: 53% (over three steps).

(**8a**−*α*) [*α*]₀²⁵ 36.3 (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 7.39–7.25 (m, 10H, Ph), 4.78–4.76 (m, 2H, H-4, PhCH₂), 4.69 (d, 1H, *J* = 11.9 Hz, PhCH₂), 4.57 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.46 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.11 (br s, 1H, H-3), 3.83 (m, 1H, H-1), 3.61 (m, 1H, H-2), 3.15 (dd, 1H, *J*_{5a,5b} = 16.4, *J*_{5a,4} = 5.5 Hz, H-5a), 2.73 (dd, 1H, *J* = 11.2, 11.1 Hz, N–*C*H₂CH₂CH₃), 2.61–2.55 (m, 2H, H-5b, N–*C*H₂CH₂CH₃), 2.42 (m, 1H, H-1'a), 2.35 (m, 1H, H-1'b), 2.08 (s, 3H, COCH₃), 1.98 (s, 3H, OCOCH₃), 1.45–1.42 (m, 2H, N–CH₂CH₂CH₃), 0.83 (t, 3H, *J* = 7.3 Hz, N–CH₂CH₂CH₂); ¹³C NMR (CDCl₃): δ 209.3 (C=O), 170.2 (–O–C=O), 139.0 (Ar), 138.2 (Ar), 128.3 (Ar), 128.2 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 76.6 (C-2), 76.5 (C-3), 74.7 (C-4), 71.2 (PhCH₂), 70.0 (PhCH₂), 56.0 (N–CH₂CH₂CH₃), 55.2 (C-5), 44.3 (C-1), 37.4 (C-1'), 31.1 (COCH₃), 21.0 (OCOCH₃, N–CH₂CH₂CH₃). HRESIMS: calcd for C₂₇H₃₆NO₅ [M+H]⁺: 454.2588, found: 454.2567.

(8a-β) [α]₂^D 10.3 (*c* 0.6, CHCl₃); ¹H NMR (CDCl₃): δ 7.35–7.25 (m, 10H, Ph), 4.84 (m, 1H, H-4), 4.76 (d, 1H, *J* = 12.2 Hz, PhCH₂), 4.64 (d, 1H, *J* = 12.1 Hz, PhCH₂), 4.59 (d, 1H, *J* = 11.5 Hz, PhCH₂), 4.39 (d, 1H, *J* = 11.5 Hz, PhCH₂), 4.17 (br s, 1H, H-3), 3.38 (m, 1H, H-1), 3.29 (d, 1H, *J* = 9.5 Hz, H-2), 2.83–2.76 (m, 2H, N–CH₂CH₂CH₃, H-5a), 2.66 (dd, 1H, *J*_{5a,5b} = 16.1, *J*_{5a,4} = 5.6 Hz, H-5b), 2.55–2.46 (m, 2H, N– CH₂CH₂CH₃, H-1'a), 2.33 (m, 1H, H-1'b), 2.09 (s, 3H, COCH₃), 2.00 (s, 3H, OCOCH₃), 1.44–1.42 (m, 2H, N–CH₂CH₂CH₃), 0.82 (t, 3H, *J* = 7.1 Hz, N–CH₂CH₂CH₃); ¹³C NMR (CDCl₃): δ 207.2 (C=O), 170.3 (–O–C=O), 138.9 (Ar), 137.6 (Ar), 128.4 (Ar), 128.2 (Ar), 127.8 (Ar), 127.7 (Ar), 127.6 (Ar), 127.4 (Ar), 79.8 (C-2), 74.0 (C-3), 72.9 (C-4), 71.3 (PhCH₂), 70.1 (PhCH₂), 55.8 (N–CH₂CH₂CH₃), 53.9 (C-5), 48.7 (C-1), 45.4 (C-1'), 30.0 (COCH₃), 21.0 (OCOCH₃), 19.5 (N– CH₂CH₂CH₃), 11.6 (N–CH₂CH₂CH₃). HRESIMS: calcd for C₂₇H₃₆NO₅ [M+H]⁺: 454.2588, found: 454.2553.

3.4.2. 1-C-(4-O-Acetyl-2,3-di-O-benzyl-5-butylamino-5-deoxy-D-ribopyranosyl)propan-2-one (8b)

Yield: 55% (over three steps).

(8b-α) [α]₂²⁵ 47.3 (*c* 0.3, CHCl₃); ¹H NMR (CDCl₃): δ 7.35–7.27 (m, 10H, Ph), 4.79–4.76 (m, 2H, H-4, PhCH₂), 4.70 (d, 1H, *J* = 12.6 Hz, PhCH₂), 4.57 (d, 1H, *J* = 11.7 Hz, PhCH₂), 4.46 (d, 1H, *J* = 11.7 Hz, PhCH₂), 4.11 (br s, 1H, H-3), 3.83 (d, 1H, *J* = 4.4 Hz, H-1), 3.60 (m, 1H, H-2), 3.16 (dd, 1H, *J*_{5a,5b} = 16.3, *J*_{5a,4} = 5.6 Hz, H-5a), 2.73 (t, 1H, *J* = 11.1 Hz, N-CH₂CH₂C₂HCH₃), 2.61–2.56 (m, 2H, H-5b, N-CH₂CH₂CH₂CH₃), 2.45 (m, 1H, H-1'a), 2.36 (m, 1H, H-1'b), 2.08 (s, 3H, COCH₃), 2.00 (s, 3H, OCOCH₃), 1.42–1.39 (m, 2H, 2H)

N–CH₂CH₂CH₂CH₃), 1.30–1.21 (m, 2H, N–CH₂CH₂CH₂CH₃), 0.88 (t, 3H, J = 7.2 Hz, N–CH₂CH₂CH₂CH₃); ¹³C NMR (CDCl₃): δ 209.3 (C=O), 170.2 (–O–C=O), 139.0 (Ar), 138.2 (Ar), 128.4 (Ar), 128.2 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 76.6 (C-2), 76.4 (C-3), 74.7 (C-4), 71.2 (PhCH₂), 70.0 (PhCH₂), 55.3 (N–CH₂CH₂CH₂CH₃), 53.8 (C-5), 44.3 (C-1), 37.4 (C-1'), 31.1 (COCH₃), 30.0 (N–CH₂CH₂CH₂CH₃), 21.0 (OCOCH₃), 20.3 (N–CH₂CH₂CH₂CH₃), 13.9 (N–CH₂CH₂CH₃). HRESIMS: calcd for C₂₈H₃₈NO₅ [M+H]⁺: 468.2744, found: 468.2754.

(**8b**-β) $[\alpha]_{D}^{25}$ 6.4 (*c* 0.2, CHCl₃); ¹H NMR (CDCl₃): δ 7.35–7.24 (m, 10H, Ph), 4.81 (m, 1H, H-4), 4.76 (d, 1H, J = 12.1 Hz, PhCH₂), 4.65 (d, 1H, J = 12.1 Hz, PhCH₂), 4.58 (d, 1H, J = 11.5 Hz, PhCH₂), 4.38 (d, 1H, J = 11.6 Hz, PhCH₂), 4.17 (br s, 1H, H-3), 3.38 (m, 1H, H-1), 3.30 (d, 1H, J = 8.0 Hz, H-2), 2.80–2.78 (m, 2H, N–CH₂CH₂C₂HCH₃, H-5a), 2.65 (dd, 1H, $J_{5a,5b}$ = 16.3, $J_{4,5b}$ = 5.2 Hz, H-5b), 2.57–2.53 (m, 2H, N-CH₂CH₂C₂HCH₃, H-1'a), 2.36 (m, 1H, H-1'b), 2.09 (s, 3H, COCH₃), 2.01 (s, 3H, OCOCH₃), 1.42–1.39 (m, 2H, N–CH₂CH₂CH₂CH₂CH₃), 1.26–1.24 (m, 2H, N–CH₂CH₂CH₂CH₃), 0.88 (t, 3H, I = 7.1 Hz, N-CH₂CH₂CH₂CH₃); ¹³C NMR (CDCl₃): δ 207.2 (C=O), 170.2 (-O-C=O), 138.9 (Ar), 137.6 (Ar), 128.4 (Ar), 128.2 (Ar), 127.8 (Ar), 127.7 (Ar), 127.6 (Ar), 127.4 (Ar), 79.8 (C-2), 74.0 (C-3), 72.9 (C-4), 71.3 (PhCH₂), 70.1 (PhCH₂), 55.8 (N-CH₂CH₂CH₂CH₃), 53.9 (C-5), 48.7 (C-1), 45.3 (C-1'), 30.0 (COCH₃), 21.0 (OCOCH₃), 20.4 (N-CH₂CH₂CH₂CH₃), 19.7 (N-CH₂CH₂CH₂CH₃), 13.9 (N- $CH_2CH_2CH_2CH_3$). HRESIMS: calcd for $C_{28}H_{38}NO_5$ [M+H]⁺: 468. 2744, found: 468.2735.

3.4.3. 1-C-(4-O-Acetyl-2,3-di-O-benzyl-5-deoxy-5-hexylaminop-ribopyranosyl)propan-2-one (8c)

Yield: 51% (over three steps).

 $(8c-\alpha) [\alpha]_{D}^{25} 50.0 (c 0.4, CHCl_3); {}^{1}H NMR (CDCl_3): \delta 7.36-7.25 (m, CDCl_3)$ 10H, Ph), 4.78–4.75 (m, 2H, H-4, PhCH₂), 4.69 (d, 1H, J = 12.1 Hz, PhCH₂), 4.57 (d, 1H, J = 11.6 Hz, PhCH₂), 4.46 (d, 1H, J = 11.8 Hz, PhCH₂), 4.11 (br s, 1H, H-3), 3.83 (d, 1H, J = 4.8 Hz, H-1), 3.60 (m, 1H, H-2), 3.15 (dd, 1H, $J_{5a,5b}$ = 16.3, $J_{5a,4}$ = 5.5 Hz, H-5a), 2.73 [dd, 1H, J = 11.2, 11.0 Hz, N-CH₂(CH₂)₄CH₃], 2.61-2.57 [m, 2H, H-5b, N-CH₂(CH₂)₄CH₃], 2.45 (m, 1H, H-1'a), 2.35 (m, 1H, H-1'b), 2.08 (s, 3H, COCH₃), 2.00 (s, 3H, OCOCH₃), 1.47–1.41 [m, 2H, N-CH₂CH₂(CH₂)₃CH₃], 1.28-1.24 [m, 6H, N-CH₂CH₂(CH₂)₃CH₃], 0.87 [t, 3H, J = 6.9 Hz, N-CH₂(CH₂)₄CH₃]; ¹³C NMR (CDCl₃): δ 209.3 (C=O), 170.2 (-O-C=O), 139.0 (Ar), 138.2 (Ar), 128.3 (Ar), 128.2 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 76.6 (C-2), 76.5 (C-3), 74.7 (C-4), 71.2 (PhCH₂), 70.1 (PhCH₂), 55.2 [N-CH₂(CH₂)₄CH₃], 54.1 (C-5), 44.3 (C-1), 37.4 (C-1'), 31.6 [N-CH₂(CH₂)₂CH₂CH₂CH₃], 31.1 (COCH₃), 27.8, 26.8 [N-CH₂ CH₂CH₂(CH₂)₂CH₃], 22.6, 21.0 (OCOCH₃), 20.3, 14.0 [N-CH₂ (CH₂)₄CH₃]. HRESIMS: calcd for C₃₀H₄₁NaNO₅ [M+Na]⁺: 518.2933, found: 518.2931.

(**8c**-β) $[\alpha]_{D}^{25}$ 11.4 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃): δ 7.34–7.24 (m, 10H, Ph), 4.80 (m, 1H, H-4), 4.76 (d, 1H, J = 12.2 Hz, PhCH₂), 4.65 (d, 1H, J = 12.2 Hz, PhCH₂), 4.58 (d, 1H, J = 11.4 Hz, PhCH₂), 4.38 (d, 1H, J = 11.5 Hz, PhCH₂), 4.17 (br s, 1H, H-3), 3.37 (m, 1H, H-1), 3.29 (d, 1H, J = 9.1 Hz, H-2), 2.82-2.78 [m, 2H, N-CH₂(CH₂)₄CH₃, H-5a], 2.65 (dd, 1H, $J_{5a,5b} = 16.2$, $J_{4,5b} = 5.2$ Hz, H-5b), 2.54–2.51 (m, 2H, N-CH2CH2CH3, H-1'a), 2.35 (m, 1H, H-1'b), 2.09 (s, 3H, COCH3), 2.01 (s, 3H, OCOCH₃), 1.42-1.39 [m, 2H, N-CH₂CH₂(CH₂)₃CH₃], 1.29–1.18 [m, 6H, N–CH₂CH₂(CH₂)₃CH₃], 0.86 (t, 3H, J = 6.9 Hz, N-CH₂(CH₂)₄CH₃); ¹³C NMR (CDCl₃): δ 207.2 (C=O), 170.3 (-O-C=O), 138.9 (Ar), 137.6 (Ar), 128.4 (Ar), 128.2 (Ar), 127.8 (Ar), 127.7 (Ar), 127.6 (Ar), 127.4 (Ar), 79.9 (C-2), 74.0 (C-3), 72.9 (C-4), 71.3 (PhCH₂), 70.1 (PhCH₂), 55.8 [N-CH₂(CH₂)₄CH₃], 52.2 (C-5), 48.8 (C-1), 45.3 (C-1'), 31.7 [N-CH₂(CH₂)₂CH₂CH₂CH₃], 30.0 (COCH₃), 27.0, 26.3, 22.5, 21.0 (OCOCH₃), 14.0 [N-CH₂(CH₂)₄CH₃]. HRESIMS: calcd for $C_{30}H_{41}NaNO_5$ [M+Na]⁺: 518.2933, found: 518.2911.

3.4.4. 1-C-(4-O-Acetyl-2,3-di-O-benzyl-5-benzylamino-5-deoxyp-ribopyranosyl)propan-2-one (8d)

Yield: 52% (over three steps).

(8d-α) [α]_D²⁵ 63.0 (*c* 0.7, CHCl₃); ¹H NMR (CDCl₃): δ 7.39–7.21 (m, 15H, Ar), 4.78 (d, 1H, *J* = 11.9 Hz, PhCH₂), 4.74 (m, 1H, H-4), 4.68 (d, 1H, *J* = 11.9 Hz, PhCH₂), 4.56 (d, 1H, *J* = 11.7 Hz, PhCH₂), 4.48 (d, 1H, *J* = 11.9 Hz, PhCH₂), 4.16 (br s, 1H, H-3), 3.95 (m, 1H, H-1), 3.79 (d, 1H, *J* = 13.5 Hz, N–CH₂–Ph), 3.70 (dd, 1H, *J*_{2,3} = 5.3, *J*_{1,2} = 2.6 Hz, H-2), 3.45 (d, 1H, *J* = 13.5 Hz, N–CH₂–Ph), 3.22 (dd, 1H, *J*_{5a,5b} = 16.5, *J*_{4,5a} = 5.3 Hz, H-5a), 2.78–2.71 (m, 2H, H-1'a, H-5b), 2.46 (dd, 1H, *J*_{1'a,1'b} = 11.3, *J*_{1'b,1} = 5.3 Hz, H-1'b), 2.08 (s, 3H, COCH₃), 1.93 (s, 3H, OCOCH₃); ¹³C NMR (CDCl₃): δ 209.1 (C=O), 170.2 (–O–C=O), 138.8 (Ar), 138.2 (Ar), 128.4 (Ar), 128.3 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 127.1 (Ar), 76.7 (C-2), 76.2 (C-3), 74.8 (C-4), 71.2 (PhCH₂), 69.9 (PhCH₂), 58.6 (N–CH₂–Ph), 55.9 (C-5), 43.1(C-1), 38.0 (C-1'), 30.9 (COCH₃), 21.0 (OCOCH₃). HRESIMS: calcd for C₃₁H₃₆NO₅ [M+H]⁺: 502.2588, found: 502.2586.

(**8d**−**β**) [α]₂²⁵ 22.0 (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 7.36–7.21 (m, 15H, Ar), 4.80 (m, 1H, H-4), 4.77 (d, 1H, *J* = 12.1 Hz, Ph*CH*₂), 4.65 (d, 1H, *J* = 8.2 Hz, Ph*CH*₂), 4.63 (d, 1H, *J* = 7.4 Hz, Ph*CH*₂), 4.42 (d, 1H, *J* = 11.6 Hz, Ph*CH*₂), 4.21 (br s, 1H, H-3), 3.80 (d, 1H, *J* = 13.5 Hz, N–*CH*₂–Ph), 3.48 (m, 1H, H-1), 3.40 (d, 1H, *J* = 8.8 Hz, H-2), 3.32 (d, 1H, *J* = 13.5 Hz, N–*CH*₂–Ph), 2.83 (dd, 1H, *J*_{5a,5b} = 16.4, *J*_{4,5a} = 3.9 Hz, H-5a), 2.71 (dd, 1H, *J* = 11.1, 11.0 Hz, H-5b), 2.63– 2.58 (m, 2H, H-1'), 2.06 (s, 3H, COCH₃), 1.93 (s, 3H, OCOCH₃); ¹³C NMR (CDCl₃): δ 207.2 (C=O), 170.2 (-O-C=O), 139.1 (Ar), 138.9 (Ar), 137.6 (Ar), 128.4 (Ar), 128.3 (Ar), 128.2 (Ar), 127.8 (Ar), 127.6 (Ar), 127.4 (Ar), 127.0 (Ar), 79.5 (C-2), 74.1 (C-3), 72.9 (C-4), 71.3 (Ph*CH*₂), 69.8 (Ph*CH*₂), 56.7 (N–*CH*₂–Ph), 56.3 (C-5), 48.9 (C-1), 45.3 (C-1'), 30.1 (COCH₃), 21.0 (OCO*CH*₃). HRESIMS: calcd for C₃₁H₃₆NO₅ [M+H]⁺: 502.2588, found: 502.2568.

3.4.5. 1-C-(4-O-Acetyl-2,3-di-O-benzyl-5-deoxy-5-*p*methylbenzylamino-p-ribopyranosyl)propan-2-one (8e)

Yield: 56% (over three steps).

(8e-α) [α]₂^{D5} 63 (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 7.36–7.24 (m, 10H, Ar), 7.13 (d, 2H, *J* = 7.4 Hz, *p*-CH₃–*Ph*), 7.09 (d, 2H, *J* = 7.6 Hz, *p*-CH₃–*Ph*), 4.77 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.74 (m, 1H, H-4), 4.67 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.57 (d, 1H, *J* = 11.6 Hz, PhCH₂), 4.47 (d, 1H, *J* = 11.6 Hz, PhCH₂), 4.57 (d, 1H, *J* = 11.6 Hz, PhCH₂), 4.47 (d, 1H, *J* = 11.6 Hz, PhCH₂), 4.15 (br s, 1H, H-3), 3.94 (d, 1H, *J* = 5.0 Hz, H-1), 3.74 (d, 1H, *J* = 13.4 Hz, N–CH₂–Ar), 3.69 (m, 1H, H-2), 3.40 (d, 1H, *J* = 13.4 Hz, N–CH₂–Ar), 3.21 (dd, 1H, *J*_{5a,5b} = 16.7, *J*_{4,5a} = 5.22 Hz, H-5a), 2.74–2.70 (m, 2H, H-1'), 2.46 (dd, 1H, *J* = 11.0, 4.3 Hz, H-5b), 2.32 (s, 3H, *p*-CH₃–Ph), 2.09 (s, 3H, COCH₃), 1.93 (s, 3H, OCOCH₃); ¹³C NMR (CDCl₃): δ 209.1 (C=O), 170.1 (–O–C=O), 138.9 (Ar), 138.2 (Ar), 136.7 (Ar), 135.7 (Ar), 129.0 (Ar), 128.4 (Ar), 128.3 (Ar), 127.7 (Ar), 127.6 (Ar), 127.4 (Ar), 76.3 (C-2, C-3), 74.7 (C-4), 71.2 (PhCH₂), 69.9 (PhCH₂), 58.3 (N–CH₂–Ar), 55.9 (C-5), 43.0 (C-1), 37.9 (C-1'), 30.9 (COCH₃), 21.1 (OCOCH₃), 21.0 (*p*-CH₃–Ph). HRE-SIMS: calcd for C₃₂H₃₈NO₅ [M+H]⁺: 516.2744, found: 516.2735.

(8e-β) [α]_D²⁵ 4.2 (*c* 0.3, CHCl₃); ¹H NMR (CDCl₃): δ 7.36–7.22 (m, 10H, Ar), 7.15–7.08 (m, 4H, Ar), 4.78 ((m, 1H, H-4), 4.77 (d, 1H, *J* = 11.9 Hz, PhCH₂), 4.64 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.62 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.64 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.62 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.64 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.62 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.64 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.62 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.64 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.62 (d, 1H, *J* = 13.3 Hz, PhCH₂), 4.62 (d, 1H, *J* = 16.5, 3.7 Hz, N-CH₂-Ar), 3.46 (br s, 1H, H-1), 3.40 (d, 1H, *J* = 16.5, 3.9 Hz, H-5a), 2.69 (dd, 1H, *J* = 11.2, 11.1 Hz, H-5b), 2.64–2.58 (m, 2H, H-1'), 2.31 (s, 3H, *p*-CH₃–Ph), 2.07 (s, 3H, OCOCH₃), 1.93 (s, 3H, OCOCH₃); ¹³C NMR (CDCl₃): δ 207.2 (C=O), 170.2 (-O-C=O), 138.9 (Ar), 137.6 (Ar), 136.6 (Ar), 135.9 (Ar), 129.0 (Ar), 128.4 (Ar), 128.2 (Ar), 127.8 (Ar), 127.6 (Ar), 127.4 (Ar), 79.5 (C-2), 74.0 (C-3), 72.9 (C-4), 71.3 (PhCH₂), 69.8 (PhCH₂), 56.7 (N-CH₂–Ar), 56.3 (C-5), 48.8 (C-1), 45.3 (C-1'), 30.1 (COCH₃), 21.0 (OCOCH₃). HRESIMS: calcd for C₃₂H₃₈NO₅ [M+H]⁺: 516.2744, found: 516.2725.

3.4.6. 1-C-(4-O-Acetyl-2,3-di-O-benzyl-5-deoxy-5-pnitrobenzylamino-p-ribopyranosyl)propan-2-one (8f)

Yield: 50% (over three steps).

 $(8f-\alpha) [\alpha]_{D}^{25}$ 45.7 (c 0.3, CHCl₃); ¹H NMR (CDCl₃): δ 8.15 (d, 2H, J = 8.5 Hz, Ar), 7.42 (d, 2H, J = 7.7 Hz, Ar), 7.37–7.28 (m, 10H, Ar), 4.80-4.75 (m, 2H, PhCH₂, H-4), 4.70 (d, 1H, J = 11.9 Hz, PhCH₂), 4.55 (d, 1H, J = 11.6 Hz, PhCH₂), 4.48 (d, 1H, J = 11.6 Hz, PhCH₂), 4.15 (br s, 1H, H-3), 3.90 (m, 1H, H-1), 3.87 (d, 1H, J = 13.8 Hz, N-CH₂-Ar), 3.70 (m, 1H, H-2), 3.55 (d, 1H, J = 14.2 Hz, N-CH₂-Ar), 3.25 (dd, 1H, $J_{5a,5b}$ = 17.1, $J_{5a,4}$ = 4.6 Hz, H-5a), 2.79 (dd, 1H, J = 11.2, 10.3 Hz, H-1'a), 2.73 (dd, 1H, $J_{5a,5b} = 17.3$, $J_{4,5b} = 5.0$ Hz, H-5b), 2.41 (d, 1H, J = 7.7 Hz, H-1'b), 2.12 (s, 3H, COCH₃), 1.96 (s, 3H, OCOCH₃); ¹³C NMR (CDCl₃): δ 208.7 (C=O), 170.1 (-O-C=O), 147.3 (Ar), 138.7 (Ar), 137.9 (Ar), 128.8 (Ar), 128.4 (Ar), 128.2 (Ar), 128.1 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 123.6 (Ar), 76.4 (C-2), 76.0 (C-3), 74.8 (C-4), 71.2 (PhCH₂), 69.8 (PhCH₂), 57.8 (N-CH₂-Ar), 55.5 (C-5), 43.5 (C-1), 37.9 (C-1'), 30.9 (COCH₃), 20.9 (OCOCH₃). HRESIMS: calcd for C₃₁H₃₄N₂NaO₇ [M+Na]⁺: 569.2258, found: 569.2270.

(**8f**-β) $[\alpha]_D^{25}$ 11.5 (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 8.14 (d, 2H, J = 8.7 Hz, Ar), 7.43 (d, 2H, J = 8.1 Hz, Ar), 7.37–7.26 (m, 10H, Ph), 4.81 (d, 1H, J = 9.5 Hz, H-4), 4.77 (d, 1H, J = 12.0 Hz, PhCH₂), 4.67 (d, 1H, *J* = 11.9 Hz, PhCH₂), 4.63 (d, 1H, *J* = 11.5 Hz, PhCH₂), 4.42 (d, 1H, I = 11.4 Hz, PhCH₂), 4.22 (br s, 1H, H-3), 3.86 (d, 1H, J = 14.8 Hz, N-CH₂-Ar), 3.53 (br s, 1H, H-1), 3.46 (d, 1H, *J* = 14.8 Hz, N-*C*H₂-Ar), 3.40 (d, 1H, *J* = 9.1 Hz, H-2), 2.86 (dd, 1H, J_{5a,5b} = 16.8, J_{5a,4} = 3.8 Hz, H-5a), 2.77 (dd, 1H, J = 11.2, 10.8 Hz, H-5b), 2.64-2.59 (m, 2H, H-1'), 2.06 (s, 3H, COCH₃), 1.95 (s, 3H, OCOCH₃); ¹³C NMR (CDCl₃): δ 207.0 (C=O), 170.2 (-O-C=O), 147.2 (Ar), 138.7 (Ar), 137.5 (Ar), 128.8 (Ar), 128.5 (Ar), 128.2 (Ar), 127.9 (Ar), 127.8 (Ar), 127.6 (Ar), 127.5 (Ar), 79.9 (C-2), 74.1 (C-3), 72.8 (C-4), 71.4 (PhCH₂), 69.5 (PhCH₂), 56.1 (N-CH₂-Ph), 55.8 (C-5), 49.1 (C-1), 45.1 (C-1'), 30.1 (COCH₃), 20.9 (OCOCH₃). HRESIMS: calcd for C₃₁H₃₄N₂NaO₇ [M+Na]⁺: 569.2258, found: 569.2256.

3.4.7. 1-C-(4-O-Acetyl-2,3-di-O-benzyl-5-*p*-chlorobenzylamino-5-deoxy-**D**-ribopyranosyl)propan-2-one (8g)

Yield: 58% (over three steps).

(**8**g−α) [α]₂²⁵ 60.3 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃): δ 7.36–7.26 (m, 12H, Ar), 7.18 (d, 2H, *J* = 7.8 Hz, Ar), 4.78 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.73 (m, 1H, H-4), 4.68 (d, 1H, *J* = 12.0 Hz, PhCH₂), 4.55 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.47 (d, 1H, *J* = 11.8 Hz, PhCH₂), 4.15 (br s, 1H, H-3), 3.92 (m, 1H, H-1), 3.74 (d, 1H, *J* = 13.9 Hz, N-CH₂-Ar), 3.67 (d, 1H, *J* = 2.2 Hz, H-2), 3.41 (d, 1H, *J* = 13.6 Hz, N-CH₂-Ar), 3.22 (dd, 1H, *J*_{5a,5b} = 16.8, *J*_{5a,4} = 4.8 Hz, H-5a), 2.74–2.69 (m, 2H, H-1'), 2.42 (dd, 1H, *J*_{5a,5b} = 10.8, *J*_{4,5b} = 4.2 Hz, H-5b), 2.09 (s, 3H, COCH₃), 1.95 (s, 3H, OCOCH₃); ¹³C NMR (CDCl₃): δ 209.0 (C=O), 170.1 (-O-C=O), 138.9 (Ar), 138.0 (Ar), 137.3 (Ar), 132.8 (Ar), 129.7 (Ar), 128.4 (Ar), 128.2 (Ar), 127.7 (Ar), 127.5 (Ar), 127.4 (Ar), 76.6 (C-2), 76.2 (C-3), 74.8 (C-4), 71.2 (PhCH₂), 69.9 (PhCH₂), 57.8 (N-CH₂-Ar), 55.7 (C-5), 43.1 (C-1), 38.0 (C-1'), 30.9 (COCH₃), 21.0 (OCOCH₃). HRESIMS: calcd for C₃₁H₃₅ClNO₅ [M+H]⁺: 536.2198, found: 536.2186.

(**8g**−**β**) [α]_D²⁵ 11.4 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃): δ 7.36–7.24 (m, 12H, Ar), 7.18 (d, 2H, *J* = 7.2 Hz, Ar), 4.79–4.75 (m, 2H, H-4, PhCH₂), 4.65 (d, 1H, *J* = 11.6 Hz, PhCH₂), 4.63 (d, 1H, *J* = 11.2 Hz, PhCH₂), 4.41 (d, 1H, *J* = 11.5 Hz, PhCH₂), 4.20 (br s, 1H, H-3), 3.74 (d, 1H, *J* = 13.7 Hz, N-CH₂-Ar), 3.48 (m, 1H, H-1), 3.38 (d, 1H, *J* = 7.7 Hz, H-2), 3.30 (d, 1H, *J* = 13.7 Hz, N-CH₂-Ar), 2.83 (dd, 1H, *J* = 7.7 Hz, H-2), 3.30 (d, 1H, *J* = 13.7 Hz, N-CH₂-Ar), 2.83 (dd, 1H, *J* = 5.52 (m, 2H, H-1′b, H-5b), 2.06 (s, 3H, COCH₃), 1.94 (s, 3H, OCOCH₃); ¹³C NMR (CDCl₃): δ 207.1 (C=O), 170.2 (-O-C=O), 138.8 (Ar), 137.5 (Ar), 132.7 (Ar), 129.7 (Ar), 128.5 (Ar), 128.2 (Ar), 127.9 (Ar), 127.8 (Ar), 127.6 (Ar), 127.5 (Ar), 79.3 (C-2), 74.0 (C-3), 72.8 (C-4), 71.3 (PhCH₂), 69.7 (PhCH₂), 56.1 (N-CH₂-Ar),

55.8 (C-5), 48.8 (C-1), 45.2 (C-1'), 30.1 (COCH₃), 21.0 (OCOCH₃). HRESIMS: calcd for $C_{31}H_{35}CINO_5$ [M+H]⁺: 536.2198, found: 536.2189.

3.4.8. 1-C-(4-O-Acetyl-2,3-di-O-benzyl-5-o-chlorobenzylamino-5-deoxy-p-ribopyranosyl)propan-2-one (8h)

Yield: 50% (over three steps).

(**8h**– α) [α]_D²⁵ 68.2 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃): δ 7.37–7.26 (m, 12H, Ar), 7.22 (m, 1H, Ar), 7.16 (m, 1H, Ar), 4.78 (d, 1H, J = 12.0 Hz, PhCH₂), 4.76 (m, 1H, H-4), 4.69 (d, 1H, J = 11.9 Hz, PhCH₂), 4.57 (d, 1H, J = 11.7 Hz, PhCH₂), 4.48 (d, 1H, J = 11.8 Hz, PhCH₂), 4.16 (br s, 1H, H-3), 3.95 (m, 1H, H-1), 3.77 (d, 1H, J = 14.5 Hz, N-CH₂-Ar), 3.70 (br s, 1H, H-2), 3.66 (d, 1H, J = 14.5 Hz, N-CH₂-Ar), 3.26 (dd, 1H, $J_{5a,5b} = 16.5$, $J_{4,5a} = 5.5 \text{ Hz}$, H-5a), 2.84 (dd, 1H, J = 11.2, 11.2 Hz, H-1'a), 2.74 (dd, 1H, $J_{5a,5b}$ = 16.5, $J_{4,5b}$ = 5.9 Hz, H-5b), 2.48 (dd, 1H, $J_{H-1'a,H-1'b}$ = 11.3, $J_{H-1'a,H-1'b}$ $_{1,H-1'b}$ = 4.7 Hz, H-1'b), 2.10 (s, 3H, COCH₃), 1.95 (s, 3H, OCOCH₃); 13 C NMR (CDCl₃): δ 208.9 (C=O), 170.1 (-O-C=O), 138.9 (Ar), 138.1 (Ar), 136.1 (Ar), 134.1 (Ar), 130.1 (Ar), 129.4 (Ar), 128.4 (Ar), 128.2 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 126.7 (Ar), 76.6 (C-2), 76.2 (C-3), 74.8 (C-4), 71.2 (PhCH₂), 69.9 (PhCH₂), 55.9 (N-CH2-Ar), 55.3 (C-5), 43.5 (C-1), 38.1 (C-1'), 31.0 (COCH3), 21.0 $(OCOCH_3)$. HRESIMS: calcd for $C_{31}H_{34}CINNaO_5$ [M+Na]⁺: 558.2018, found: 558.2008.

(**8h**-**β**) $[\alpha]_{D}^{25}$ 11.1 (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 7.35–7.29 (m, 12H, Ar), 7.20 (m, 1H, Ar), 7.15 (m, 1H, Ar), 4.83 (m, 1H, H-4), 4.77 (d, 1H, J = 12.1 Hz, PhCH₂), 4.65 (d, 1H, J = 11.5 Hz, PhCH₂), 4.63 (d, 1H, J = 11.4 Hz, PhCH₂), 4.42 (d, 1H, J = 11.5 Hz, PhCH₂), 4.21 (br s, 1H, H-3), 3.84 (d, 1H, J = 14.8 Hz, N-CH₂-Ar), 3.55 (m, 1H, H-2), 3.53 (d, 1H, J = 14.5 Hz, N-CH₂-Ar), 3.42 (m, 1H, H-1), 2.84 (dd, 1H, J = 10.9, 10.7 Hz, H-1'a), 2.77 (dd, 1H, $J_{5b,5a} = 16.7$, $J_{4,5a}$ = 4.9 Hz, H-5a), 2.64 (dd, 1H, $J_{5a,5b}$ = 16.6, $J_{4,5b}$ = 5.8 Hz, H-5b), 2.60 (dd, 1H, *J*_{1',1'} = 11.0, *J*_{1,1'} = 4.5 Hz, H-1'b), 2.04 (s, 3H, COCH₃), 1.95 (s, 3H, OCOCH₃); ¹³C NMR (CDCl₃): δ 207.0 (C=O), 170.2 (-O-C=O), 138.8 (Ar), 137.6 (Ar), 136.4 (Ar), 133.8 (Ar), 130.3 (Ar), 129.4 (Ar), 128.4 (Ar), 128.2 (Ar), 127.8 (Ar), 127.6 (Ar), 127.4 (Ar), 126.7 (Ar), 79.6 (C-2), 74.0 (C-3), 72.9 (C-4), 71.4 (PhCH₂), 69.7 (PhCH₂), 56.4 (N-CH₂-Ph), 53.6 (C-5), 49.2 (C-1), 45.0 (C-1'), 30.1(COCH₃), 21.0(OCOCH₃). HRESIMS: calcd for C₃₁H₃₄CINNaO₅ [M+Na]⁺: 558.2018, found: 558.2010.

3.4.9. 1-C-[4-O-Acetyl-2,3-di-O-benzyl-5-deoxy-5-(thiophen-2-ylmethyl)amino-p-ribopyranosyl]propan-2-one (8i)

Yield: 51% (over three steps).

 $(8i-\alpha) [\alpha]_{D}^{25}$ 66.1 (c 0.6, CHCl₃); ¹H NMR (CDCl₃): δ 7.36–7.27 (m, 10H, Ar), 7.20 (d, 1H, J = 4.7 Hz, thiophen), 6.91 (s, 1H, thiophen), 6.84 (s, 1H, thiophen), 4.79-4.76 (m, 2H, PhCH₂, H-4), 4.67 (d, 1H, J = 11.7 Hz, PhCH₂), 4.56 (d, 1H, J = 11.8 Hz, PhCH₂), 4.48 (d, 1H, J = 11.7 Hz, PhCH₂), 4.14 (br s, 1H, H-3), 3.97 (m, 1H, H-1), 3.94 (d, 1H, J = 14.3 Hz, N-CH₂-thiophen), 3.71 (d, 2H, H-2, N-CH₂thiophen), 3.22 (dd, 1H, *J*_{5b,5a} = 16.6, *J*_{4,5a} = 4.9 Hz, H-5a), 2.76 (dd, 1H, J = 10.9, 10.8 Hz, H-1'a), 2.67 (dd, 1H, $J_{5a,5b} = 16.2$, $J_{4,5b}$ = 5.5 Hz, H-5b). 2.60 (d, 1H, J = 6.8 Hz, H-1'b), 2.08 (s, 3H, COCH₃), 1.96 (s, 3H, OCOCH₃); 13 C NMR (CDCl₃): δ 208.9 (C=O), 170.1 (-O-C=O), 143.3 (thiophen), 138.9 (Ar), 138.1 (Ar), 128.3 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 126.4 (Ar), 125.2 (Ar), 124.9 (Ar), 76.2 (C-2, C-3), 74.7 (C-4), 71.3 (PhCH₂), 69.9 (PhCH₂), 55.5 (N-CH2-thiophen), 53.4 (C-5), 43.3 (C-1), 38.0 (C-1'), 30.9 (COCH₃), 21.0 (OCOCH₃). HRESIMS: calcd for C₂₉H₃₃NNaO₅S [M+Na]⁺: 530.1972, found: 530.1950.

(**8i**-β) $[\alpha]_D^{25}$ 11.5 (*c* 0.2, CHCl₃); ¹H NMR (CDCl₃): δ 7.38–7.27 (m, 10H, Ar), 7.20 (d, 1H, *J* = 9.5 Hz, thiophen), 6.90 (m, 1H, thiophen), 6.84 (s, 1H, thiophen), 4.80 (d, 1H, *J* = 8.6 Hz, H-4), 4.75 (d, 1H, *J* = 12.0 Hz, PhCH₂), 4.66–4.60 (m, 2H, PhCH₂), 4.41 (d, 1H, *J* = 11.5 Hz, PhCH₂), 4.21 (br s, 1H, H-3), 3.92 (d, 1H, *J* = 14.4 Hz, N-*CH*₂-thiophen), 3.69 (d, 1H, *J* = 14.6 Hz, N-*CH*₂-thiophen), 3.47

(m, 1H, H-1), 3.36 (d, 1H, J = 8.3 Hz, H-2), 2.82–2.78 (m, 2H, H-5a, H-1'a), 2.74 (dd, 1H, $I_{5a,5b}$ = 10.8, $I_{4,5b}$ = 4.7 Hz, H-5b), 2.65 (m, 1H, H-1'b), 2.08 (s, 3H, COCH₃), 1.93 (s, 3H, OCOCH₃); ¹³C NMR (CDCl₃): δ 207.0 (C=O), 170.2 (-O-C=O), 142.6 (thiophen), 138.8 (Ar), 137.5 (Ar), 128.4 (Ar), 128.3 (Ar), 128.2 (Ar), 127.8 (Ar), 127.7 (Ar), 127.5 (Ar), 127.4 (Ar), 79.7 (C-2), 74.0 (C-3), 72.8 (C-4), 71.4 (PhCH₂), 69.9 (PhCH₂), 55.7 (N-CH₂-thiophen), 55.0 (C-5), 49.0 (C-1), 45.3 (C-1'), 30.7 (COCH₃), 21.0 (OCOCH₃). HRESIMS: calcd for C₂₉H₃₃NNaO₅S [M+Na]⁺: 530.1972, found: 530.1962.

Acknowledgements

We acknowledge the financial support from Chinese Academy of Sciences (Hundreds of Talents Program). We also express our gratitude towards the Analytical and Testing Center of Chengdu Institute of Biology for their help and assistance in NMR and MS analysis done in this manuscript.

References

- 1. McNaught, A. D. Pure Appl. Chem. 1996, 68, 1919-2008.
- Stütz, A. E. Iminosugars as Glycosidase Inhibitors: Noiirimycin and Beyond: Wiley-2. VCH: Weinheim, 1999.
- 3. Compain, P.; Martin, O. R. Iminosugars: From Synthesis to Therapeutic Applications; John Wiley & Sons, Ltd, 2007.
- Iminosugars: Recent Insights into their Bioactivity and Potential as Therapeutic 4 Agents, Martin, O, R.; Compain, P.; Eds.; Curr. Top. Med. Chem.; 2003; Vol. 3.
- Ganem, B. Acc. Chem. Res. 1996, 29, 340-347. 5
- Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem. Res. 2002, 102, 515–553. 6. Sears, P.; Wong, C.-H. Angew. Chem., Int. Ed. 1999, 38, 2300-2324. 7
- Scott, L. J.; Spencer, C. M. Drugs 2000, 59, 521–549.
- 8.
- 9. Mitrakou, A.; Tountas, N.; Raptis, A. E.; Bauer, R. J.; Schulz, H.; Raptis, S. A. Diabetic Med. 1998, 15, 657-660.

- 10. Yu, Z.; Sawkar, A. K.; Whalen, L. J.; Wong, C.-H.; Kelly, J. W. J. Med. Chem. 2007, 50.94-100.
- 11. Cox, T.; Lachmann, R.; Hollak, C.; Aerrts, J.; van Weely, S.; Hrebicek, M.; Platt, F.; Butters, T.; Dwek, R.; Moyses, C.; Gow, I.; Elstein, D.; Zimran, A. Lancet 2000, 355, 1481-1485
- 12. Butters, T. D.; Dwek, R. A.; Platt, F. M. Chem. Rev. 2000, 100, 4683-4696.
- 13. Compain, P.; Martin, O. R. Bioorg. Med. Chem. 2001, 9, 3077-3092.
- 14. Zhu, X.; Sheth, K. A.; Li, S.; Chang, H.-H.; Fan, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 7450-7453.
- 15. Szcepina, M. G.; Yuan, Y.; Johnston, B. D.; Svensson, B.; Pinto, B. M. J. Am. Chem. Soc. 2004, 126, 12458-12469.
- 16. Zhou, J.; Zhang, Y. M.; Zhou, X.; Zhou, J.; Zhang, L.-H.; Ye, X.-S.; Zhang, X.-L. Bioorg. Med. Chem. 2008, 16, . 1605-1613.
- 17. Masson, G.; Compain, P.; Martin, O. R. Org. Lett. 2000, 2, 2971-2974.
- 18. Afarinkia, K.; Bahar, A. Tetrahedron: Asymmetry 2005, 16, 1239-1287.
- 19. Godin, G.; Compain, P.; Masson, G.; Martin, O. R. J. Org. Chem. 2002, 67, 6960-6970.
- 20. Dhavale, D. D.; Matin, M. M.; Sharma, T.; Sabharwal, S. G. Bioorg. Med. Chem. 2003, 11, . 3295-3305.
- Melo, E. B.; Gomes, A. D.; Carvalho, I. Tetrahedron 2006, 62, 10277-10302. 21.
- Pearson, M. S. M.; Mathé-Allainmat, M.; Fargeas, V.; Lebreton, J. Eur. J. Org. 22. Chem. 2005, 2159-2191.
- Wang, Z.; Shao, H.; Lacroix, E.; Wu, S.-H.; Jennings, H.; Zou, W. J. Org. Chem. 23 2003. 68. 8097-8105.
- Shao, H.; Wang, Z.; Lacroix, E.; Wu, S.-H.; Jennings, H.; Zou, W. J. Am. Chem. Soc. 24. 2002, 124, 2130-2131.
- 25. Yi, T.; Wu, A.; Wu, S.-H.; Zou, W. Tetrahedron 2005, 61, 11716-11722.
- 26. Zou, W.; Sandbhor, M.; Bhasin, M. J. Org. Chem. 2007, 72, 1226-1234.
- 27. Zou, W.; Wu, A.; Bhasin, M.; Sandbhor, M.; Wu, S.-H. J. Org. Chem. 2007, 72, 2686-2689
- 28. Wu, A. T.; Wu, P. J.; Zou, W.; Chir, J. L.; Chang, Y. C.; Tsai, S. Y.; Guo, C. Q.; Chang, W. S.; Hsieh, Y. C. Carbohydr. Res. 2008, 343, 2887-2893.
- Rogers, H. R.; McDermott, J. X.; Whitesides, G. M. J. Org. Chem. 1975, 40, 3577-3580.
- 30. Bowers, A.; Halsall, T. G.; Jones, E. R. H.; Lemin, A. J. J. Chem. Soc. 1953, 2555.
- Shao, H.; Ekthawatchai, S.; Chen, C.-C.; Wu, S.-H.; Zou, W. J. Org. Chem. 2005, 70, 31. 4726-4734.
- 32. Boucheron, C.; Desvergnes, V.; Compain, P.; Martin, O. R.; Lavi, A.; Mackeen, M.; Wormald, M. R.; Dwek, R. A.; Butters, T. D. Tetrahedron: Asymmetry 2005, 16, 1747-1756