Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

Imidazo[1,5-*a*][1,2,4]-triazolo[1,5-*d*][1,4]benzodiazepines as potent and highly selective GABA_A α 5 inverse agonists with potential for the treatment of cognitive dysfunction

Bernd Buettelmann^{a,*}, Theresa M. Ballard^b, Rodolfo Gasser^c, Holger Fischer^c, Maria-Clemencia Hernandez^b, Frédéric Knoflach^b, Henner Knust^a, Heinz Stadler^a, Andrew W. Thomas^a, Gerhard Trube^a

^a F. Hoffmann-La Roche Ltd, Pharmaceutical Research Basel, Discovery Chemistry, CH-4070 Basel, Switzerland ^b F. Hoffmann-La Roche Ltd, Pharmaceutical Research Basel, CNS Disease Biology Area, CH-4070 Basel, Switzerland

^c F. Hoffmann-La Roche Ltd, Pharmaceutical Research Basel, Non Clinical Safety, CH-4070 Basel, Switzerland

ARTICLE INFO

Article history: Received 7 July 2009 Revised 4 August 2009 Accepted 5 August 2009 Available online 11 August 2009

Keywords: GABA A Inverse agonism Cognitive dysfunction

ABSTRACT

In a search for GABA_A α 5 ligands that combine high subtype binding selectivity with a marked inverse agonism imidazo[1,5-*a*][1,2,4]-triazolo[1,5-*d*][1,4]benzodiazepines were identified as a promising class. A short tandem reaction allowed rapid access to this chemical series, thereby facilitating rapid SAR generation which guided the optimization process. Two compounds (**10e** and **11f**) were found to be active in an in vivo paradigm for cognitive improvement.

© 2009 Elsevier Ltd. All rights reserved.

 γ -Aminobutyric acid (GABA) is one of the main neurotransmitters in human and rodent brain. It exerts its effects by interaction with $GABA_A$, $GABA_B$ and $GABA_C$ receptors. Among these, $GABA_A$ receptors have a proven record as drugable targets, for example, benzodiazepines, barbiturates and neurosteroids interact at this receptor.¹ GABA_A receptors are functionally characterized as ligand-gated chloride channels with a GABA recognition site. Structurally, they are defined as pentameric assemblies of different subunits.² Most mammalian GABA_A receptors consist of $\alpha 1$, $\alpha 2$, α 3 or α 5 in conjunction with β 2 or β 3 and γ 2 -subunits.³ These subtypes also contain a recognition site for prototypical benzodiazepines = BZ (exemplified by diazepam 1, Fig. 1), which allosterically modulate the functional effect of GABA. Based on their modulatory effects, BZ-site ligands are categorized as either agonists (positive modulators, facilitating Cl⁻-flux), antagonists ('neutral' modulators, normalizing Cl⁻-flux at basal level) or inverse agonists (negative modulators, reducing Cl⁻-flux). For example, **1** does not discriminate between $\alpha 1$, $\alpha 2$, $\alpha 3$ and $\alpha 5$ containing GA-BA_A subtypes; functionally, it increases Cl⁻-flux. Compounds with this profile are defined as non-selective agonists. A number of drugs of this type are marketed as sedatives, anxiolytics and/or anticonvulsants. Reported side effects are memory impairment

* Corresponding author. *E-mail address*: bernd.buettelmann@roche.com (B. Buettelmann). and dependence.⁴Another marketed drug, Flumazenil **2**, is characterized as a subtype non-selective antagonist. It is clinically used in the treatment of BZ-agonist overdosing.⁵

The therapeutic potential of subtype non-selective inverse agonists (exemplified by FG7142, **3**) as cognition enhancers has been shown to be limited by severe side effects (anxiety, agitation).^{6.7}

Figure 1. Reference compounds: BZ-ligands with different profiles.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2009.08.027

With knowledge generated by the use of genetically modified mice meanwhile evidence has accumulated that a selective GABA_A $\alpha 5$ inverse agonists can be expected to be devoid of these side effects.⁷ Two conceptionally different approaches have been followed to design compounds with this profile: Selective $GABA_A \alpha 5$ inverse agonism may be achieved either by a high binding selectivity combined with the desired modulatory effect at the GABA_A α 5 receptor or by functional selectivity (i.e., inverse agonism at the GABA_A $\alpha 5$ receptor with low efficacy at the other GABA_A receptor subtypes). Following the first approach, researchers at Merck in 2003 described a series of compounds that combined the desired efficacy with a significant GABA_A α 5 binding selectivity (up to 30-fold).⁶ Subsequently, this group focused on functionally selective compounds active in animal models of cognitive function (e.g., α 5IA-II, **4**).^{9,10} A related compound α 5IA was tested in humans and shown to reverse alcohol induced memory impairment without causing significant side effects.⁷

With the aim to identify GABA_A α 5 subtype selective BZ-ligands endowed with significant inverse agonism, a high-throughput screening campaign of the Roche compound collection was performed. A subsequent lead generation process furnished imidazotriazolobenzodiazepine **5** as a promising candidate for further optimization. Compared with reference compound **4** (Table 1), it is characterized by a somewhat reduced GABA_A α 5 receptor binding affinity combined with a significant binding selectivity versus GA-BA_A α 1, α 2 and α 3 subtype receptors. As both compounds potently modulate Cl⁻-flux of the GABA_A α 5 receptor (by –41% and –42%, respectively), they are functionally characterized as inverse agonists.¹¹

The known literature synthesis of compounds with an imidazotriazolobenzodiazepine skeleton (as in 5) relies on a long linear sequence which turned out to be unpractical for rapid SAR exploration.¹² Since we sought for a synthetic sequence that allowed a late stage introduction of the 6-substituent, we developed an alternative approach that commenced with a nucleophilic aromatic substitution of 5-bromo-2-fluoro-benzonitrile 6 by 4-methylimidazole (Scheme 1). The mixture of regioisomeric products was recrystallizated to afford **7** as a pure regioisomer. Reaction with Eschenmoser's salt then introduced regioselectively the dimethylaminomethyl-function. The desired leaving group on the heterocycle could cleanly be obtained by reaction with methyl iodide (8). Substituting this with a wide range of acylhydrazides at 120 °C led to intermediates 9 (identified by MS, not isolated), which under prolonged heating condensed to the desired triazolo-annelated imidazobenzodiazepine 10.13 Using differently substituted 2-fluorobenzonitriles, analogous products could be obtained (Table 3).

First we studied (Table 2) the influence of substituents at the triazole (position 6). Formally adding a methyl to **5** (leading to

Table 1

Binding and efficacy profile of 4 and 5

Scheme 1. Reagents and conditions: (a) 4-methylimidazole, K_2CO_3 , DMSO, 90 °C; (b) Eschenmoser's salt, DMF, 100 °C; (c) methyl iodide, CH_2Cl_2 , 4 °C; (d) R^1 -CONHNH₂, DMF, 120 °C.

10a) reduced GABA_A α 5 receptor affinity threefold. However, also affinity at the GABA_A α 1, α 2 and α 3 receptors was reduced by a factor 10, leading overall to a marked selectivity increase. Steric bulk directly linked to the heterocycle (as in 10b) led to an even further reduction of $GABA_A \alpha 5$ receptor affinity, rendering the compound uninteresting. Introduction of a small ether functionality (10c) restored GABA_A α5 receptor affinity, with an overall selectivity profile comparable to the simple methyl substituted 10a. A marked $GABA_A \alpha 5$ receptor affinity increase combined with a significant GABA_A α 1, α 2 and α 3 receptor selectivity (almost 2 log units) was observed for the methylene linked cyclopropane **10d**. Compared to 5, however, each of these compounds were functionally not very efficacious, they were only weak inverse agonists (efficacy >-25%). With the aim to combine high binding selectivity with a reasonable intrinsic efficacy, a large number of substituents were screened. Methylene linked pyrrolidinone 10e had a selectivity profile comparable to 10d with a threefold higher efficacy. Generally, methylene linked nonaromatic as well as aromatic heterocycles were found to be highly binding selective. Notably, isoxazole **10f** (selectivity vs GABA_A α 1, α 2 and α 3 receptors >100) was one of the most interesting compounds, as it also was categorized as a partial inverse agonist (efficacy <-25%). Oxadiazole 10g was the most binding selective compound. However, selectivity was achieved only at the expense of functional activity (weak inverse agonism). Overall, appropriately designed substituents positioned at C-6 gave access to high binding selectivity. Substituents at this position were tolerated at the α 5, but not at GABA_A α 1, α 2 and $\alpha 3$ receptors. The structure-efficacy-relationship was much less well understood; purely lipophilic interactions seemed to reduce inverse agonism.

Compd		Affinity K _I (nM) G	ABA A αxβ3γ2 recept	tors ^a	Efficacy GABA A $\alpha x \beta 3 \gamma 2$ receptors ^{a,b} (%)			%)
	α_5	α_1	α_2	α ₃	α_5	α_1	α_2	α ₃
4 ^c 5	1.5 6	1.5 136	1.5 186	1.5 132	-41 -42	-9 -16	11 nt	10 nt

^a Cloned rat or human receptor subunits were expressed in insect SF9 cells, human HEK293 cells or *Xenopus laevis* oocyts for ³H-flumazenil $\alpha_1 \alpha_2 \alpha_3$ and α_5 binding or electrophysiology.

² Efficacy is determined as the percentage change of a submaximal (EC₁₀) response to GABA.

⁶ Compound synthesized and tested at F. Hoffmann-La Roche Ltd. The results are in good agreement with those reported.¹⁰

Table 2

Binding and efficacy profile of variously substituted compounds 10

Compd	R ¹		Affinity K _I (nM) GABA _A $\alpha x \beta 3 \gamma 2^d$			Efficacy GABA _A $\alpha 5\beta 3\gamma 2$ receptors ^d (%)
		α5	α1	α2	α3	
10a	Me	20	1421	3160	1624	-17
10b	t-Bu	146	3160	1068	1206	nt
10c	CH ₂ –OMe	13	619	693	592	-3
10d	CH ₂ –Cyclopropyl	5	538	407	407	-12
10e	+ °	7	624	669	515	-34
10f	+ O. N	0.6	188	105	73	-27
10g		0.9	469	317	277	-18

^d see Table 1.

Table 3

Binding and efficacy profile of analogues of 10f

Compd	R ²	Affinity GABA _A $\alpha 5\beta 3\gamma 2^{d}$ K _I (nM)	Selectivity: $\frac{K_1(nM) \propto \beta \beta \gamma 2}{K_1(nM) \propto \beta \beta \gamma 2}$			Efficacy GABA _A $\alpha 5\beta 3\gamma 2$ receptors ^d (%)
			versus $\alpha 1$	versus a2	versus $\alpha 3$	
10f	Br	0.6	314	174	122	-27
11f	Cl	0.6	466	251	223	-18
12f	OCF ₃	11	68	83	111	-20
13f	Н	1.6	57	20	16	nt
14f	Me	0.8	620	332	360	-16
15f	OMe	2.2	307	193	222	-13
16f	OHe	1.2	99	nt	nt	-7

^d See Table 1.

^e Synthesized by BBr₃ mediated hydrolysis of **15f**.

Table 4

Property profiles of 10e, 10f and 11f

	10e	10f	11f
Solubility (µg/mL) ^f	>550	7	14
$\log D_{7.4}$	1.5	2.6	2.3
Permeation coefficient (10 ⁻⁶ cm s ⁻¹) (PAMPA)	1.5	3.3	3.1
Cl (mL/min/mg protein) ^g (rat/human)	16/3	10/0	6/0

^f LYSA, for measurement details, see Ref. 15.

^g From incubations with liver microsomes.

We then studied the influence of substituents at position 3 of the imidazo-triazolobenzodiazepine keeping constant the methylene linked methylisoxazole that conferred high binding selectivity (Table 3). Formally replacing Br by Cl led to **11f** which in terms of GABA_A α 5 receptor affinity and selectivity was slightly superior. The desired inverse agonism, however, was reduced. Breaking σ symmetry by introduction of the trifluoromethoxy substituent

Table 5Pharmacokinetic parameters of 10e, 10f and 11f (in rats)

	10e	10f	11f
Half life $t_{1/2}$ (h)	0.8	1.4	1.4
Cl (mL/min/kg)	30	39	9.5
Vss (L/kg)	1.3	4.6	1.8
F (%)	32	34	44
Brain/plasma	0.09	0.2	1.0

(**12f**) was clearly detrimental:¹⁴ GABA_A α 5 receptor affinity was reduced almost 20-fold. Whilst a simple hydrogen (**13f**) gave a single digit affinity at the GABA_A α 5 receptor, selectivity versus GABA_A α 1, α 2 and notably α 3 receptors was compromised. Interestingly, at least in terms of GABA_A α 5 receptor affinity and selectivity, the electronic nature of the 3-substituent does not play a role: electron-donating methyl (**14f**) and methoxy (**15f**) combine high GABA_A α 5 receptor affinity with selectivity. In this respect, even

Figure 2. Effect of **4**, **10e** and **11f** on scopolamine (0.03 mg/kg s.c.) induced impairment of working memory, measured by choice accuracy across delay interval in the delayed match to position (*DMTP*) task. Key: \bigcirc = vehicle; \textcircledline scopolamine. (**A**) Compound **4**: \square = 1.0 mg/kg ip; \blacklozenge = 1.0 mg/kg ip versus scopolamine. (**B**) Compound **10e** versus scopolamine: \blacklozenge = 0.3, \blacksquare = 1.0, \blacklozenge = 3.0 mg/kg ip. (**C**) Compound **11f** vs. scopolamine: \blacklozenge = 0.3, \blacksquare = 1.0 mg/kg po. Male Lister hooded rats (*n*=11-12) were used in each study. Data are expressed as mean ± SEM. **p* <0.05, ***p* <0.01, ****p* <0.001 versus scopolamine.

a hydroxy (**16f**) substituent looks promising. In terms of efficacy, however, none of the substituents tested were as effective as the Br substituted structure **10f**.

Complimentary to the receptor parameters discussed above, other molecular properties were also determined systematically and were typically found to be in the desired range (Table 4). Whilst pyrolidinone-substituted **10e** combined low lipophilicity with a remarkable solubility, its methylisoxazole substituted analogue **10f** was found to be more lipophilic (by 1 log unit) with an acceptable solubility. Formally replacing Br in **10f** by Cl leading to **11f** expectedly reduced lipophilicity while increasing solubility. Permeation of all compounds was in the desired range, with a trend of facilitated transport for more lipophilic compounds. Finally, microsomal clearance (Cl) was low, with indications for modulation.

Based on their favorable drug-like properties, **10e**, **10f** and **11f** were selected for a pharmacokinetic study (Table 5). **10e** displayed a short half life in rats with medium clearance and volume of distribution (Vss). Bioavailability (F) was tolerable, however, brain penetration was suboptimal. The other Br substituted compound (**10f**) had a somewhat longer half life and a threefold higher volume of distribution. This was rationalized in terms of the increased lipophilicity (log D = 1.5 and 2.6, respectively). Interestingly, the Cl substituted analogue **11f** had an overall improved profile: notably brain penetration was in the desired range.

To answer the question, whether $GABA_A \alpha 5$ receptor highly binding selective compounds with only partial or even weak in-

verse agonism may have a potential in the treatment of memory impairment, **10e** and **11f** had been selected for an in-depth evaluation on scopolamine-induced impairment of working memory in the delayed match to position (DMTP) task (Fig. 2).¹⁶ Reference compound **4** administered at 1.0 mg/kg ip 30 min prior to testing, significantly reversed the working memory impairment induced by scopolamine (Fig. 2A). Compound **10e** significantly reversed the scopolamine-induced impairment in a dose-related manner, with full reversal achieved at 1.0–3.0 mg/kg ip 30 min post-administration (Fig. 2B). **10e** was not active following po administration. Compound **11f** significantly, but partially, attenuated the scopolamine-induced working memory impairment at 1.0 mg/kg po at 60 min post-administration (Fig. 2C).

Notably, in this experiment no behavioral impairment was observed. From these results it can be concluded that even weak inverse agonists at the GABA_A α 5 receptor may have potential as memory enhancing agents. In line with the referred literature we found that high binding selectivity versus GABA_A α 1, α 2 and α 3 receptors can prevent unwanted side effects.

References and notes

- 1. Bormann, J. Trends Pharmacol. Sci. 2000, 21, 16.
- Simon, J.; Wakimoto, H.; Fujita, N.; Lalande, M.; Barnard, E. A. J. Biol. Chem. 2004, 279, 41422.
- 3. McKernan, R. M.; Whiting, P. J. Trends Neurosci. 1996, 19, 139.
- 4. Chouinard, G. J. Clin. Pharmacol. 2004, 65, 7.
- 5. Bentue-Ferrer, D.; Bureau, M.; Patat, A.; Allain, H. CNS Drug Rev. 1996, 2, 390.
- Dorow, R.; Horowski, R.; Paschelke, G.; Amin, M.; Braestrup, C. Lancet 1983, 2, 98.
- (a) Dawson, G. R.; Maubach, K. A.; Collinson, N.; Cobain, M.; Everitt, B. J.; MacLeod, A. M.; Choudhury, H. I.; McDonald, L. M.; Pillai, G.; Rycroft, W.; Smith, A. J.; Sternfeld, F.; Tattersall, F. D.; Wafford, K. A.; Reynolds, D. S.; Seabrook, G. R.; Atack, J. R. J. Pharmacol. Exp. Ther. **2006**, 316, 1335; (b) Nutt, D. J.; Besson, M.; Wilson, S. J.; Dawson, G. R.; Lingford-Hughes, A. R. Neuropharmacology **2007**, 53, 810.
- Chambers, M. S.; Atack, J. R.; Broughton, H. B.; Collinson, N.; Cook, S.; Dawson, G. R.; Hobbs, S. C.; Marshall, G.; Maubach, K. A.; Pillai, G. V.; Reeve, A. J.; MacLeod, A. M. J. Med. Chem. 2003, 46, 2227.
- Collinson, N.; Atack, J. R.; Laughton, P.; Dawson, G. R.; Stephens, D. N. Psychopharmacology 2006, 188, 619.
- Sternfeld, F.; Carling, R. W.; Jelley, R. A.; Ladduwahetty, T.; Merchant, K. J.; Moore, K. W.; Reeve, A. J.; Street, L. J.; O'Connor, D.; Sohal, B.; Atack, J. R.; Cook, S.; Seabrook, G.; Wafford, K.; Tattersall, F. D.; Collinson, N.; Dawson, G. R.; Castro, J. L.; MacLeod, A. M. J. Med. Chem. 2004, 47, 2176.
- 11. We define compounds with an efficacy <-40% as 'full inverse agonists', compounds with an efficacy >-40% and <-25% as 'partial inverse agonists' and those with >-25% and <-10% as 'weak inverse agonists'.
- 12. Gerecke, M.; Kyburz, E.; Borer, R.; Gassner, W. Heterocycles 1994, 39, 693.
- Buettelmann, B.; Knust, H.; Thomas, A. U.S. Patent 2007082890; Chem. Abstr. 2007, 146, 422016.
- Shishkov, I. F.; Khristenko, L. V.; Vilkov, L. V.; Oberhammer, H. J. Phys. Chem. A 2004, 108, 4966.
- Gonzalez, R. C. B.; Huwyler, J.; Boess, F.; Walter, I.; Bittner, B. Biopharm. Drug Dispos. 2004, 25, 37.
- Higgins, G. A.; Ballard, T. M.; Huwyler, J.; Kemp, J. A.; Gill, R. Neuropharmacology 2003, 44, 324.