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Multi-component organic cyclizations,
1
 exemplified by the Hantzsch pyridine synthesis have 

been know for over a century.
2
  The concept of scaffolds and scaffold hopping in medicinal 

chemistry is much more recent, however, the number of potentially useful applications of 

scaffolds is arithmetically increased by their judicious combination, and especially valuable are 

those combinations which are attainable by efficient stereoselective methodology.  

 

Interest in the usefulness of Hantzsch esters was exponentially enhanced by the discovery that 

specific 4-aryldihydropyridines (DHPs) possessed robust biological activity as calcium channel 

antagonists, and thus are useful as antihypertensive medicines.
3
 In many cases, there is a 

pronounced enantioselectivity of action,
4
 yet as often observed the agents in general medical 

practice have been obtained by chromatographic or classical resolution. The corresponding 4-

aryl quinolones have been found to have useful activity as inhibitors of TGFβ Signaling,
5,6 

and as 

agents which reduce cellular tau levels which represents an important target in Alzheimer's 

disease,
7,8

 and are the current subject of intensive pre-clinical development. Early advances in 

stoichiometric adjuvant asymmetric synthesis of chiral DHPs were accomplished first by Meyers 
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and Natale,
9
 and later by Enders,

10 
and Dondoni.

11
 The critical breakthrough to catalytic multi-

component asymmetric DHP synthesis was achieved initially by Gong,
12

  and extended to 

quinolones by Gestwicki.
7
 We herein report, to the best of our knowledge, the first facile 

preparation of the most sterically hindered 4-isoxazolyl-1,4-dihydropyridines to date, the first 

examples of 4-isoxazolyl-quinolones, as well as their highly stereoselective organocatalytic 

asymmetric synthesis. 
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Scheme 1. Lanthanide catalyzed synthesis of sterically hindered 3-aryl-Isoxazolyl-

Dihydropyridines 2, and asymmetric organocatalysis of dihydroquinolones 3.  

 

The Isoxazolyl-dihydropyridines are characterized by their complex conformational dynamics,
13

 

which we have demonstrated can lead to divergent structure activity relationships (SAR) for 

different biomolecular targets.
14,15

  In previous studies we observed that increasing the size of 

substituents on the isoxazole lead to vanishingly low yields, even under forcing conditions.
16

  As 

an example, naphthyl groups appended to isoxazoles, even separated by an ethylene spacer, 

produced typical single digit yields in the Hantzsch synthesis, even under elevated pressure. 

Previous reports on the use of lanthanide catalysts are noteworthy for their relatively mild 

reaction conditions, and we sought to test the scope and limitations of this promising 

methodology.  

 



  

The Ytterbium catalyzed
16

  method produced moderate to good yields of IDHPs unavailable 

using standard methods. The single crystal x-ray diffractometry  (sc-xrd) of 2a and 2b illustrates 

the steric crowding of the C-3 isoxazole substituent. Characteristic of IDHPs, in the unit cell, 

intermolecular hydrogen bonding is observed between the isoxazole ring N and the DHP N-H. In 

the anthryl example, 2c, significant anisotropy is observed in the 
1
H NMR for both the C-2 and 

C-6 methyl groups of the DHP moiety, consistent with an analogous conformation in solution. 

 

Single crystal x-ray diffractometery and solid state conformation. 

The Isoxazolyl-quinolone was crystallized and its structure determined by x-ray diffractometry. 

The heterocyclic axis at the quinolone C-4 is oriented O-endo, that is, with the isoxazolyl oxygen 

towards the dihydropyridine moiety, and the 3'-aryl exo to the quinolone. The Quinolone 3-ester 

adopts a synperiplanar conformation, the quinolone locks the C-5 ketone in the antiperiplanar 

conformer. In the unit cell, there is an intermolecular hydrogen bond between the quinolone N-1 

hydrogen, and the quinolone ring carbonyl oxygen.  

 

Table 1. Lanthanide catalyzed synthesis of sterically hindered IDHPs 2a-i.  
 

Entry Ar % yield HRMS calc'd Found 
2a 1'-Naphthyl 64.04 501.2026 501.2019 
2b 1'-(2'-methoxy-Naphthyl) 50.21 491.2182 491.2205 
2c 9'-Anthryl 41.98 511.2233 511.2228 
2d 3,4-Bis-benzyloxy-phenyl 67.95 469.1975 469.1990 
2e 3-Phenoxy- phenyl 60.98 501.2026 501.2019 
2f 4-Methoxy- phenyl 60.96 441.2026 441.2057 
2g 2,4-Dimethoxy- phenyl 63.98 623.2757 623.2709 
2h 3,4-Dimethoxy- phenyl 53.19 623.2757 623.2807 
2i 4-Biphenyl 46.23 487.2233 487.2256 
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Figure 1. 50% probability ellipsoids ORTEPs of  (A) Naphthyl-2a. R = 5.1%. (B) Methoxy-

Naphthyl-2b. R= 9%. (C) IQ (+)-3a, R = 5.2%. 



  

 

The asymmetric synthesis was performed according to Gestwicki,
6
 from the isoxazole aldehydes 

using the organocatalysis of BINOL phosphates as pioneered by Gong. Chemical yields were 

moderate to good, and optical purities as established by HPLC-CSP were excellent (>90% e.e.). 

Absolute configurations were assigned by analogy to the work of Schade,
7
 who established the 

absolute configuration of the (+) enantiomer as (R)- by single crystal x-ray diffractometry. The 

quinolone absolute configuration is probably driven by the relative reactivity rates of ketoester 

verses cyclic 1,3-diketone, and therefore arises from initial Knovenagel condensation by the 

ketoester, followed by Michael addition of the diketone. In contrast, the IDHP in Entry 2j, the 

Knovenagel product was preformed with the triazole, followed by condensation with the 

ketoester. Therefore, that the absolute configuration of the entries in Table 2 are all (-), (S)- is 

fortuitous. We would not expect the corresponding multi-component synthesis of IDHPs  

analogous to 2j to proceed with significant stereoselectivity, unless the initial Knovenagel adduct 

was similarly preformed. 

 

Table 2. Asymmetric organocatalytic synthesis of IDHP 2j and 4-isoxazolyl-Quinolones, 3. All 

examples gave optical purities of >90% e.e by HPLC-CSP (Supporting data). 

 

 
Entry Ar R Catalyst Yield []D 

RS-3a -Ph -CH2CH3 Yb(OTf)3 30.25  
(-)-3a   (R)-TRIP 25.92 -11.2 
RS-3b -o-Br-Ph -CH2CH3 Yb(OTf)3 71.60  
(-)-3b   (R)-TRIP 64.35 -13.5 
RS-3c -m-Br-Ph -CH2CH3 Yb(OTf)3 62.07  
(-)-3c   (R)-TRIP 60.40 -2.36 
RS-3d -p-Br-Ph -CH2CH3 Yb(OTf)3 67.19  
(-)-3d   (R)-TRIP 65.34 -0.032 
RS-2j -p-Br-Ph -4-CH2(N-phenethyl)triazole Yb(OTf)3 31.56  
(-)-2j   (R)-TRIP 21.32 -2.68 

 

 



  

We are intrigued by the potential of the hindered 4-isoxazole dihydropyridines and 4-isoxazolyl-

quinolones for theranostic applications,
18

 and look forward to detailed study of their 

conformational dynamics and bioactivity. We will report on our progress in due course. 

 

Supplementary Material 

Full experimental details and characterization for all new compounds. Crystal structure 

determination, atomic coordinates and hydrogen-bond geometry for 2a, 2b, and  RS-3a, 

including unit cells.  SYBYL transition state modeling of  the organocatalytic asymmetric 

synthesis. 
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