Ambient Lithium–SO₂ Batteries with Ionic Liquids as Electrolytes**

Huabin Xing,* Chen Liao, Qiwei Yang, Gabriel M. Veith, Bingkun Guo, Xiao-Guang Sun,* Qilong Ren, Yong-Sheng Hu, and Sheng Dai*

Abstract: Li-SO₂ batteries have a high energy density but bear serious safety problems that are associated with pressurized SO₂ and flammable solvents in the system. Herein, a novel ambient Li-SO₂ battery was developed through the introduction of ionic liquid (IL) electrolytes with tailored basicities to solvate SO₂ by reversible chemical absorption. By tuning the interactions of ILs with SO₂, a high energy density and good discharge performance with operating voltages above 2.8 V were obtained. This strategy based on reversible chemical absorption of SO₂ in IL electrolytes enables the development of the next generation of ambient Li-SO₂ batteries.

L nergy storage is of central importance for modern society.^[1] The lithium–sulfur dioxide (Li-SO₂) battery is a lightweight, long-life, high energy density primary battery in which cheap, abundant SO₂ serves as the active cathode material.^[2] In contrast to the 1.5 V class primary batteries, such as alkaline batteries^[3] and metal–air batteries,^[4] the nominal voltage of the Li-SO₂ battery is 3.0 V. Furthermore, the Li-SO₂ battery has an energy density of up to 330 Wh kg⁻¹, which is 2–4 times greater than that of alkaline batteries. The unique characteristics of Li-SO₂ batteries has opened up some special applications beyond the capability of traditional primary

[*]	Dr. H. B. Xing, Dr. Q. W. Yang, Prof. Q. L. Ren Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 (China) E-mail: xinghb@zju.edu.cn
	Dr. H. B. Xing, Dr. C. Liao, Dr. B. K. Guo, Dr. X. G. Sun, Prof. S. Dai Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN 37831 (USA) E-mail: sunx@ornl.gov dais@ornl.gov
	Dr. G. M. Veith Materials Science and Technology Division Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA) Prof. S. Dai Department of Chemistry, University of Tennessee Konstriller, TN 27066 (UGA)
	Prof. Y. S. Hu National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences Beijing, 100190 (China)
[××]	The experimental part of this research was supported by the U.S.

*** The experimental part of this research was supported by the U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering; the calculation was supported by National Natural Science Foundation of China (21222601, 20936005), and the Zhejiang Provincial Natural Science Foundation of China (LR13B060001).

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201309539.

batteries; heretofore, it has been widely used in military, industrial, and consumer applications requiring long service life.^[2]

Despite these favorable attributes, the safety of the Li-SO₂ system limits its application.^[2a,5] First, liquefied SO₂ is accumulated in the cell by pressure that necessitates that the cells can withstand pressures greater than 3.4 atm at 294 K without leaking toxic SO₂. Furthermore, volatile acetonitrile is used as the electrolyte solvent, resulting in an uncontrolled increase in pressure, and the risk of fire, under abuse conditions. To overcome this limitation, numerous groups have investigated polar aprotic solvents, such as propylene carbonate, dimethoxyethane, and diglyme,^[5a,c] as well as salts such as lithium tetrachloroaluminate^[6] to reduce the reactivity and the vapor pressure of the electrolytes, but the former were flammable solvents and the latter were sensitive to moisture.

Herein, we have developed a novel ambient Li-SO_2 battery using a functional ionic liquid (IL) as an electrolyte (Figure 1). This strategy involves optimizing the IL chemistry

Figure 1. Representation of the ambient IL-based Li-SO₂ battery.

to capture SO_2 through reversible chemical absorption with basic ILs, while still maintaining the electrochemical activity of SO_2 . This kind of new IL-SO₂ electrolyte materials exhibit extremely high conductivity, low viscosity, and high SO_2 loading, which guarantees a high energy density and good discharge performance of the Li-SO₂ battery.

ILs are uniquely qualified for this application because of their physical properties. Specifically, they have near negligible vapor pressures, are nonflammable, and have wide electrochemical windows.^[7] Owing to these attributes, ILs have been studied as electrolyte materials for various electrochemical devices, such as electrochemical capacitors,^[8] lithium-ion batteries,^[9] Li-O₂ and Li-S batteries,^[10] but not Li-SO₂

Angew. Chem. Int. Ed. 2014, 53, 2099-2103

batteries. The structure and properties of the IL can be finely adjusted by changing the cation or anion of the IL, and specific functionality can be introduced to the IL. In this context, a number of functional ILs have been reported to absorb SO_2 , including guanidinium-based ILs,^[11] azole-based ILs,^[12] ether-functionalized ILs,^[13] and several other anion-functionalized ILs,^[14]

It is these characteristics that we have exploited and tailored in preparing the intrinsically stable Li-SO₂ batteries. In the following, we show how a high SO₂ loading and good discharge performance can be achieved by tuning the interaction between the ILs and SO₂.

Four ILs having a different cation, anion, and functional groups were prepared, and their feasibility as electrolyte materials in the Li-SO₂ battery was explored. These ILs including three 1-alkyl-3-methylimidazolium-based ILs with different anions (SCN⁻, Cl⁻, and TFSI⁻) that possess tunable interaction sites and strength with SO₂, and another IL with a piperdinium cation (Scheme 1). As the capacity of the Li-SO₂ battery is mainly dependent on the amount of SO₂ in the electrolyte, it is crucial for the ILs to capture as much SO₂ as possible under ambient conditions. Indeed, as listed in Table 1, [Bmim][SCN] shows excellent absorption capacity,

Scheme 1. Structures of the ILs in this work.

Table 1: SO₂ loading in ILs (q, mol SO₂ per mol IL) and conductivities (σ , mS cm⁻¹) of ILs and IL-SO₂ composites with different SO₂ loading at 296.3 K.

	ILs		ILs with low SO ₂ loading		SO ₂ -saturated ILs ^[a]		
	σ	σ	9	σ	9	σ	σ
[Bmim][SCN]	4.4	3.3 ^[b]	0.59	16.1	2.91	68.1	41.6 ^[b]
[Emim][Cl]	_[c]	_[c]	0.62	13.8	2.75	90.1	78.4 ^[d]
[Bmim][TFSI]	3.9	2.6 ^[b]	0.67	9.5	1.33	17.3	10.3 ^[b]
[Bmpp][TFSI]	1.2	0.6 ^[b]	0.63	4.5	1.31	9.0	5.3 ^[b]

[[]a] The ILs were saturated at a SO₂ pressure of 1 bar and 296.3 K. [b] The ILs contain 0.5 μ LiTFSI. [c] [Emim]Cl is solid at 296.3 K. [d] The IL contain 0.3 μ LiTFSI.

and it can capture 2.91 mol SO₂ per mol IL through multiplesite interactions under ambient conditions (see below for a detailed absorption mechanism), that constitutes about 50% of the electrolyte weight. For comparison, in conventional organic-solvent-based Li-SO₂ cells, SO₂ constitutes about 70% of the electrolyte weight; however, the SO₂ pressure can reach as high as 3.4 atm at 294 K.^[2] Furthermore, the temperature has a significant effect on the capacity of ILs. As the temperature increases from 286.1 to 316.1 K, the capacity of [Bmim][SCN] decreases from 3.52 to 1.85 mol mol⁻¹ (Supporting Information, Figure S1).

IL-SO₂ electrolytes also show extremely high conductivity. As shown in Table 1, the presence of SO₂ causes an increase in ionic conductivities of all of the IL-based electrolytes with or without lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), while their viscosities decrease significantly (Supporting Information, Table S1). For example, the conductivity of [Bmim][SCN]-SO₂ electrolytes with a SO₂ molar fraction of 0.59 is 16.1 mS cm⁻¹, which is 3.6 times larger than that of pure [Bmim][SCN]. And the conductivity of SO₂saturated [Bmim][SCN] electrolyte increases to a high value of 68 mS cm⁻¹ at ambient temperature and pressure, which is 15.4 times larger than that of pure [Bmim][SCN]. The conductivity of SO₂-saturated [Emim][Cl] electrolyte even reaches 90.1 mS cm⁻¹, which is comparable to that of aqueous electrolytes.^[15] Similarly, the viscosity of SO₂-saturated [bmim][SCN] electrolyte decrease to 6.8 mPas, which is far below that of pure IL (54.7 mPas). It is known that when aprotic ILs are used as electrolytes, the relatively high viscosity and the low conductivity caused by the intrinsic strong electrostatic interaction between ions are the main drawbacks for ILs.^[7d,9a,c] Therefore, such high conductivities and low viscosities make the IL-SO₂ composites be attractive electrolyte materials for battery applications.

The ambient Li-SO₂ battery with ILs/LiTFSI as electrolytes was assembled in a glove box under an argon atmosphere (see the Supporting Information). A commercial carbon cloth with a pore volume of $0.49 \text{ cm}^3 \text{g}^{-1}$ was used as the current collector for the cathode. Figure 2a shows the discharge performance of the Li-SO₂ batteries with SO₂-saturated ILs as the electrolytes under a current rate of 20 μ A cm⁻². These IL-based Li-SO₂ batteries have high working cell voltage above 2.7 V and characteristic flat

Figure 2. a) Discharge curves of ambient IL-based Li-SO₂ batteries with different ILs as electrolyte materials under a constant current density of 20 μ A cm⁻² at 296.3 K. b), c) EIS of IL-SO₂ batteries with different ILs after 24 h discharge at a constant current density of 20 μ A cm⁻²: b) [Bmim][SCN] and [Emim][CI], c) [Bmim][TFSI] and [Bmpp] [TFSI].

discharge curve, which are same as that of standard Li-SO₂ battery using an acetonitrile-based electrolyte.^[2] This ambient Li-SO₂ battery also demonstrated a good continuous discharge performance for at least over 20 days (Supporting Information, Figure S2), and about 90% of solvated SO₂ still remained in the [Bmim][SCN]-based electrolyte after 20 days discharge. The open-circuit voltage of the Li-SO₂ batteries with IL electrolytes is 3.0 ± 0.5 V, indicating that SO₂ is the active cathode material. Figure 2 a also shows the effect of the structure of the ILs on the discharge performance of the Li-SO₂ batteries. Different kind of anions investigated in this work had a slight effect on the discharge voltage, and the cell with [Bmim][SCN] as electrolyze has the highest discharge voltage of 2.83 V. When the cation is changed from 1-butyl-3methylimidazolium to N-butyl-N-methylpiperdinium, the discharge voltage of the IL-SO₂ battery with TFSI⁻ anion decreases from 2.80 to 2.71 V.

Figure 2b and c show the electrical impedance spectroscopy (EIS) results of the four IL-based Li-SO₂ cells after 24 h discharge at a constant current density of $20 \,\mu\text{A}\,\text{cm}^{-2}$. The intercept at high frequency indicates the bulk resistance that mainly relates to the electrical conductivity of electrolyte and electrodes, and the strongly superimposed semicircle at high and medium frequencies is usually assigned to the solidelectrolyte interface resistance and charge-transfer resistance.^[10b, 16] As shown in Figure 2b and c, it is clear that the cells with [Bmim][SCN] and [Bmim][Cl] as the electrolytes have a relatively small intercept at high frequency, which is consistent with the ionic conductivity data shown in Table 1. The semicircle radii of the [Bmim][SCN]-based cell is obviously smaller than those of other IL-based cells, indicating faster charge-transfer kinetics and a better discharge performance in the [bmim][SCN]-based cell.

The interactions between ILs and SO₂ were analyzed with ab initio calculations at the B3LYP/6-31 ++ G(d,p) level.^[17] The minimum energy structures of the complexes with different ratios of IL and SO₂ are shown in Figure 3b,c, and in the Supporting Information, Figures S5-S7. The cation of [Bmim][SCN] was omitted for clarity in Figure 3b and c. As seen in these figures, the anions are the main sites to capture SO₂. The calculated absorption enthalpies of SO₂ for [Bmim]-[TFSI]-SO₂ was -17.9 kJ mol⁻¹, indicating it was a physical absorption. As for [Emim][Cl], the SO₂ uptake at 1 bar was 2.75 mol per mol of IL, and the absorption enthalpies of SO_2 for [Emim][Cl]-SO₂ and [Emim][Cl]-2SO₂ complexes were $-64.7 \text{ kJ} \text{mol}^{-1}$ and $-49.0 \text{ kJ} \text{mol}^{-1}$, respectively. Thus one mol of SO₂ was trapped in [Emim][Cl] by chemical absorption (absorption enthalpy $< -50 \text{ kJ mol}^{-1}$). This chemical absorption mechanism was confirmed by a single-crystal X-ray diffraction experiment.^[18]

In the case of [Bmim][SCN], almost 3 mol of SO₂ were captured by the IL through multiple-site interactions (Figure 3b, and Supporting Information, Figures S7). The absorption enthalpies of SO₂ for the [Bmim][SCN]-3SO₂, [Bmim]-[SCN]-2SO₂, and [Bmim][SCN]-SO₂ complexes were -35.4 kJ mol⁻¹, -44.1 kJ mol⁻¹, and -58.6 kJ mol⁻¹, respectively. According to the calculated results, the interaction of SO₂ and IL in [Bmim][SCN]-SO₂ is mainly a chemical interaction; however, the interaction in [Bmim][SCN]-3SO₂.

Figure 3. a) Discharge curves of an ambient [Bmim][SCN]-based Li-SO₂ battery with different SO₂ loadings under constant current density of 20 μ A cm⁻² and at 296.3 K; red curve: SO₂-saturated [Bmim][SCN]; blue curve: [Bmim][SCN]-0.69SO₂. Insets: the interaction and the enthalpy of [Bmim]SCN-3SO₂ (b) and [Bmim]SCN-SO₂ (c); O red, S yellow, N blue, C gray. d) Discharge voltages of an ambient [Bmim]-[SCN]-based Li-SO₂ battery under different current densities at 296.3 K.

is in the physical regime. Thus, during the discharge process accompanied with SO_2 desorption, the interaction between the SO_2 and [Bmim][SCN] changes gradually from a physical interaction to a chemical interaction because of the increase in absorption enthalpy.

It is thus an important issue whether all of SO₂ captured by ILs through chemical and physical absorption are available for electrochemical reduction reaction. In this work, the discharge performance of Li-SO₂ batteries with [Bmim]-[SCN]-0.69 SO₂ and [Bmim][TFSI]-0.64 SO₂ as electrolytes, respectively, were evaluated and the results were compared with that of SO₂-saturated cells. As shown in Figure 3a, the [Bmim][SCN]-0.69 SO₂ cell also shows characteristic flat discharge curves, although the working voltage is slightly below that of SO₂-saturated [bmim][SCN], revealing that all of the SO₂, regardless of chemical absorption or physical absorption, are capable of discharging. Similar discharge behavior was observed in the [Bmim][TFSI]-0.64 SO₂ cell (Supporting Information, Figure S3). Therefore, with [Bmim][SCN] as an example, the aforementioned studies clearly show that it is a practical approach to simultaneously achieve high SO₂ loading and satisfactory discharge performance in a Li-SO₂ battery using an IL electrolyte with multiple-site SO₂ interactions.

The ambient Li-SO₂ batteries based on IL electrolytes not only have good discharge performance but also have good rate capability. The working voltage of the Li-SO₂ batteries with [Bmim][SCN] (Figure 3d) and [Bmim][TFSI] (Support-

ing Information, Figure S4) as the electrolytes decreased slightly with the increase of discharge current density. For example, the working voltage in the [Bmim][SCN]-SO₂ cell decreases from 2.83 to 2.74 V as the current density increases from 38 to 159 μ m cm⁻².

The cathode discharge products were examined with infrared (IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Figure 4a shows the IR spectra of the cathode products from the Li-SO₂ cell with [Bmim][TFSI]

Figure 4. a) IR spectra of the cathode product from an ambient IL-SO₂ battery discharged under constant current density of 20 μ A cm⁻² for 30 days at 296.3 K. b) High-resolution S2p XPS spectrum of the cathode discharge product along with a computer fitted curve of this spectrum.

as the electrolyte that discharged at 296.3 K for 10 days. The strong IR peaks at 1080, 1015, and 896 cm⁻¹ are attributed to the absorption of dithionite $(Li_2S_2O_4)$,^[19] indicating that the main component of the discharge product was Li₂S₂O₄. Furthermore, three moderate peaks at 1248, 1166, and 954 cm⁻¹ appeared in Figure 4a; the first two peaks were assigned to polythionates $Li_2S_nO_6$ (n > 3) and the peak of 954 cm⁻¹ belongs to the O-S stretching of sulfite SO₃.^[19] Figure 4b shows a high-resolution S2p XPS spectrum of the cathode discharge product along with computer-fitted curves of the spectrum. It appears that at least three different S oxidation states are present. According to the reference data,^[20] the binding energy at 166.5 eV was assigned to $Li_2S_2O_4$, while those at 162.7 and 168.7 eV were assigned to - S^+ and $-SO_3^{2-}$ sulfur 2p in Li₂S₀O₆ and Li₂SO₃, respectively. Based on both IR and XPS results, the principal discharge product from the IL-based Li-SO₂ cell was Li₂S₂O₄ (Figure 1), with other minor compounds such as Li_2SO_3 and $Li_2S_nO_6$. These minor compounds probably result from the instability of Li₂S₂O₄ under ambient conditions, which will decompose to sulfite and sulfur.[20]

In summary, we have developed an ambient Li-SO₂ battery by capturing SO₂ in the cell through reversible chemical absorption and strong physical absorption with functional ILs as the electrolytes. Our work shows that both

chemically and physically captured SO_2 with absorption enthalpy less than -64.7 kJ mol⁻¹ have good electrochemical activity during discharge. Furthermore, a high energy density and good discharge performance with working voltage over 2.8 V was achieved using an IL electrolyte with multiple-site SO_2 interactions. This strategy based on reversible chemical absorption of SO_2 in IL-electrolytes opens a new avenue to improve the safety of Li-SO₂ batteries and is also helpful for the development of next generation of ambient Li-SO₂ batteries.

Received: November 2, 2013 Published online: January 20, 2014

Keywords: absorption · ionic liquids · lithium · primary batteries · sulfur dioxide

- a) P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, *Nat. Mater.* 2012, *11*, 19–29; b) J. B. Goodenough, K. S. Park, *J. Am. Chem. Soc.* 2013, *135*, 1167–1176; c) M. Armand, J. M. Tarascon, *Nature* 2008, *451*, 652–657; d) P. G. Bruce, B. Scrosati, J. M. Tarascon, *Angew. Chem.* 2008, *120*, 2972–2989; *Angew. Chem. Int. Ed.* 2008, *47*, 2930–2946; e) A. Manthiram, Y. Z. Fu, Y. S. Su, *J. Phys. Chem. Lett.* 2013, *4*, 1295–1297.
- [2] a) B. V. Ratnakumar, M. C. Smart, R. C. Ewell, L. D. Whitcanack, A. Kindler, S. R. Narayanan, S. Surampudi, J. Electrochem. Soc. 2007, 154, A715–A724; b) G. T. K. Fey, J. Power Sources 1991, 35, 153–162; c) D. Linden, B. Macdonald, J. Power Sources 1980, 5, 35–55; d) H. F. Bittner, J. Electrochem. Soc. 1989, 136, 3147–3152.
- [3] a) Y. Paik, J. P. Osegovic, F. Wang, W. Bowden, C. P. Grey, J. Am. Chem. Soc. 2001, 123, 9367 – 9377; b) F. Y. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172–2192.
- [4] a) Y. Li, M. Gong, Y. Y. Liang, J. Feng, J. E. Kim, H. L. Wang, G. S. Hong, B. Zhang, H. J. Dai, *Nat. Commun.* **2013**, *4*, 1805;
 b) H. Zhang, X. Zhong, J. C. Shaw, L. Liu, Y. Huang, X. Duan, *Energy Environ. Sci.* **2013**, *6*, 2621–2625.
- [5] a) W. P. Kilroy, W. Ebner, D. L. Chua, H. V. Venkatasetty, J. Electrochem. Soc. 1985, 132, 274–281; b) W. P. Kilroy, J. Electrochem. Soc. 1985, 132, 998–1005; c) A. N. Dey, J. Electrochem. Soc. 1980, 127, 1886–1890.
- [6] a) A. N. Dey, W. L. Bowden, H. C. Kuo, M. L. Gopikanth, C. Schlaikjer, D. Foster, *J. Electrochem. Soc.* **1989**, *136*, 1618–1621;
 b) A. N. Dey, H. C. Kuo, P. Piliero, M. Kallianidis, *J. Electrochem. Soc.* **1988**, *135*, 2115–2120;
 c) C. W. Park, S. M. Oh, *J. Power Sources* **1997**, *68*, 338–343.
- [7] a) M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, *Nat. Mater.* 2009, *8*, 621–629; b) P. Barpanda, J. Chotard, C. Delacourt, M. Reynaud, Y. Filinchuk, M. Armand, M. Deschamps, J. Tarascon, *Angew. Chem.* 2011, *123*, 2574–2579; *Angew. Chem. Int. Ed.* 2011, *50*, 2526–2531; c) D. R. MacFarlane, M. Forsyth, C. P. Howlett, J. M. Pringle, J. Sun, G. Annat, W. Neil, E. Izgorodina, *Acc. Chem. Res.* 2007, *40*, 1165–1173; d) C. A. Angell, N. Byrne, J. P. Belieres, *Acc. Chem. Res.* 2007, *40*, 1228–1236.
- [8] P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845-854.
- [9] a) S. S. Moganty, N. Jayaprakash, J. L. Nugent, J. Shen, L. A. Archer, *Angew. Chem.* 2010, *122*, 9344–9347; *Angew. Chem. Int. Ed.* 2010, *49*, 9158–9161; b) H. Matsumoto, H. Sakaebe, K. Tatsumi, *J. Power Sources* 2005, *146*, 45–50; c) H. Yoon, G. H. Lane, Y. Shekibi, P. C. Howlett, M. Forsyth, A. S. Best, D. R. MacFarlane, *Energy Environ. Sci.* 2013, *6*, 979–986.
- [10] a) T. Zhang, H. S. Zhou, Angew. Chem. 2012, 124, 11224–11229; Angew. Chem. Int. Ed. 2012, 51, 11062–11067; b) X. G. Sun, X.

Wang, R. T. Mayes, S. Dai, *ChemSusChem* **2012**, *5*, 2079–2085; c) B. K. Guo, T. Ben, Z. H. Bi, G. M. Veith, X. G. Sun, S. L. Qiu, S. Dai, *Chem. Commun.* **2013**, *49*, 4905–4907; d) X. L. Ji, L. F. Nazar, *J. Mater. Chem.* **2010**, *20*, 9821–9826; e) L. M. Suo, Y. S. Hu, H. Li, M. Armand, L. Q. Chen, *Nat. Commun.* **2013**, *4*, 1481.

- [11] a) W. Z. Wu, B. X. Han, H. X. Gao, Z. M. Liu, T. Jiang, J. Huang, *Angew. Chem.* 2004, *116*, 2469–2471; *Angew. Chem. Int. Ed.* 2004, *43*, 2415–2417; b) J. Huang, A. Riisager, P. Wasserscheid, R. Fehrmann, *Chem. Commun.* 2006, 4027–4029.
- [12] C. M. Wang, G. K. Cui, X. Y. Luo, Y. J. Xu, H. R. Li, S. Dai, J. Am. Chem. Soc. 2011, 133, 11916–19919.
- [13] S. Y. Hong, J. Im, J. Palgunadi, S. D. Lee, J. S. Lee, H. S. Kim, M. Cheong, K. D. Jung, *Energy Environ. Sci.* 2011, *4*, 1802–1806.
- [14] a) M. B. Shiflett, A. Yokozeki, *Ind. Eng. Chem. Res.* 2010, 49, 1370–1377; b) R. A. Ando, L. J. A. Siqueira, F. C. Bazito, R. M. Torresi, P. S. Santos, *J. Phys. Chem. B* 2007, 111, 8717–8719;

c) C. M. Wang, J. J. Zheng, G. K. Cui, X. Y. Luo, Y. Guo, H. R. Li, *Chem. Commun.* **2013**, *49*, 1166–1168; d) M. J. Monteiro, R. A. Ando, L. J. A. Siqueira, F. F. Camilo, P. S. Santos, M. C. C. Ribeiro, R. M. Torresi, *J. Phys. Chem. B* **2011**, *115*, 9662–9670.

- [15] W. Xu, C. A. Angell, Science 2003, 299-302, 422-425.
- [16] X. G. Sun, C. A. Angell, *Electrochem. Commun.* 2009, *11*, 1418–1421.
 [17] C. T. Lee, W. T. Yeer, P. C. Perg, Phys. Rev. D 1099, 27, 785.
- [17] C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785– 789.
- [18] R. W. Berg, P. Harris, A. Riisager, R. Fehrmann, J. Phys. Chem. A 2013, DOI: 10.1021/jp408069n.
- [19] R. L. Ake, D. M. Oglesby, W. P. Kilroy, J. Electrochem. Soc. 1984, 131, 968–974.
- [20] K. M. Abraham, S. M. Chaudhri, J. Electrochem. Soc. 1986, 133, 1307–1311.