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a b s t r a c t 

A HAT based large PAH discotic molecule PN 8 is developed. The enlarged chromophoric core and doping 

heteroatoms enable colorimetric and fluorometric sensing of Cu 2+ and Zn 2 + with highly appreciable op- 

tical changes, good selectivity and low detection limit. Moreover, PN 8 was demonstrated as an excellent 

adsorbent to remove Cu 2 + and Zn 2 + from wastewater. 

© 2021 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia 

Medica, Chinese Academy of Medical Sciences. 
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Discotic polycyclic aromatic hydrocarbons (PAHs) have been of 

reat interest in materials science and nanoscience [1] . Due to the 

tructure tailorability, self-assembled ability and the appealing op- 

ical and electronical features of disc PAHs [2–8] , they are ideal 

andidates for smart matters with diverse applications [ 9 , 10 ]. For 

nstance, up to now, different disc-PAHs have been designed and 

ynthesized with the aim of using them for molecular recognition 

nd fluorescent sensors [ 11 , 12 ]. In this context, extending chro- 

ophoric group and doping heteroatoms are two practical strate- 

ies to improve the sensitivity and selectivity of the respective sen- 

ors, since the fluorescence intensity, energy level and intermolec- 

lar interactions could be fine-tuned. 

1,4,5,8,9,12-Hexaazatriphenylene (HAT, Fig. 1 ) represents the 

mallest two-dimensional N -containing PAH. The doped N atoms 

ffer three chelating sites to the metal ions, so that the HAT 

erivatives have been widely used in fluorescent chemosensors 

nd metal-containing supramolecular materials [13–15] . In most 

ases, HAT derivatives possess low fluorescence quantum yields 

artially due to the forbidden S 0 –S 1 transition [ 1 , 16 ]. Or, their ab-

orption and emission colors are usually located in the violet and 

lue light region which are not sensitive to naked eyes [ 16 , 17 ].

n this regard, more knowledge and examples about the improved 

ensitivity of the HAT based chemical sensors consisting of enhanc- 

ng the fluorescence intensity and tuning the emission color are 
elcome. 
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selective and sensitive metal-ion sensing properties, Chinese Chemical 
Recently, we reported a type of S,N-doped disc PAHs based on a 

-extended, thiophene-fused phenanthroline unit (S,N-PAH, Fig. 1 ). 

he large conjugated mesogenic core with increased dipole mo- 

ent derived from S,N heteroatoms not only facilitates the for- 

ation of highly ordered columnar superstructures, but also en- 

ows distinct bathochromic shifts of absorption and emission max- 

ma compared to the smaller dibenzo[ a,c ]phenazine counterpart 

 18 , 19 ]. Despite their excellent optical properties, their ion sens- 

ng feature was not observed, mainly due to the lack of efficient 

helating sites. Based on our continuous interests in the synthe- 

is and functions of large disc PAHs, in this work, we designed and 

xplored a novel disc PAHs molecule with a unique metal-ion sens- 

ng character, by fusion the phenanthroline unit with a HAT moi- 

ty (PN 8 , Fig. 1 ). With two phenyl groups fused at the nitrogen-

ontaining heterocycles, the core size of PN 8 is larger than the re- 

orted S,N-PAH [19] , with an expectation to the bathochromic shift 

f fluorescence colors, as well as the increase of overall dipole mo- 

ent and anisotropic self-assembly ability. We also envisioned that 

he incorporated N heteroatoms in the aromatic core would pro- 

ide more coordination sites, which may give rise to the recogni- 

ion of metal ions for optical sensing applications. Consequently, 

N 8 exhibited a great tendency to self-assemble into long-range 

rdered aggregates. Moreover, both the self-assembled microfibers 

nd the solutions were sensitively responsive to Cu 

2 + or Zn 

2 + , ac- 

ompanied by either quenched fluorescence or redshift emission 

olors. Meanwhile, the two metal ions could trigger dis-assembly 

f the microfibers. The efficient chelating ability of this newly 

merged PAH molecule allowed its application as an adsorbent for 

he removal of Cu 

2 + and Zn 

2 + from wastewater. 
stitute of Materia Medica, Chinese Academy of Medical Sciences. 

nylene fused large discotic polycyclic aromatic hydrocarbon with 
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Fig. 1. (a) Chemical structures of HAT, S,N-PAH and PN 8 . (b) Synthetic route of the 

target molecule PN 8 . 
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Fig. 2. (a) UV–vis absorption and fluorescence emission spectra of PN 8 in chloro- 

form (1 × 10 −5 mol/L, λex = 445 nm) and in solid state. (b) The corresponding pho- 

tographs under visible light (left) and 365 nm UV light (right). (c) Cyclic voltammo- 

grams of PN 8 measured in dichloromethane with 0.1 mol/L TBAPF 6 as electrolyte 

(scan rate = 100 mV/s). (d) DFT calculated molecular-orbital amplitude plots and 

energy levels for PN 8 in the gas phase. 
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The structure and synthetic route of the target molecule PN 8 

re presented in Fig. 1 and Scheme S1 (Supporting information). 

N 8 is an asymmetric π-extended HAT disc molecule surrounded 

y hexyloxy chains, which can be synthesized straightforwardly, by 

ondensation of the thiophene-fused phenanthroline-11,12-diamine 

 with quinoxalino[2,3- a ]-phenazine-6,7–dione 2 in the presence 

f acetic acid in a yield of 26%. The target compound PN 8 was 

nambiguously characterized by NMR spectroscopy ( 1 H and 

13 C) 

nd mass spectrometry (Figs. S9-S11 in Supporting information). 

he proton peaks of PN 8 have been assigned explicitly in Fig. S9. 

nd HR-ESI-MS spectrum of PN 8 revealed a single species ( m/z : 

111.5660 for C 66 H 78 N 8 O 4 S 2 H [ M + H ] + ) in accordance with the

alculated value. 

In dilute chloroform solution, PN 8 showed intense UV-vis ab- 

orption ranging from 250 nm to 500 nm with four distinct bands 

entered at 303 nm ( ε = 9.75 × 10 4 L mol −1 cm 

−1 ), 357 nm

 ε = 10.25 × 10 4 L mol −1 cm 

−1 ), 417 nm ( ε = 7.55 × 10 4 L mol −1 

m 

−1 ) and 445 nm ( ε = 8.75 × 10 4 L mol −1 cm 

−1 ), assignable to

he π- π ∗ and n- π ∗ transitions of the PAH core ( Fig. 2 a). PN 8 dis-

layed bright fluorescence emission in the green-yellow region at 

00–750 nm with a maximum emission at approximately 540 nm. 

n solid state, PN 8 exhibited bright yellow fluorescence with the 

bsolute quantum yield rising from 2.32% in chloroform solution to 

.66%, suggesting the aggregation-enhanced emission (AEE) prop- 

rty [20] ( Fig. 2 b). Compared to many reported HAT derivatives, 

here are distinct bathochromic shifts of the absorption and emis- 

ion colors, owing to the extended conjugation of the chromophore 

ore [21] . 

The electrochemical properties of PN 8 were studied both ex- 

erimentally and theoretically. First, the cyclic voltammograms of 

N 8 in dichloromethane are shown in Fig. 2 c. Different from S,N- 

AH that only exhibited one reversible reduction peak, three re- 

uction waves at −1.55, −1.77 and −2.09 V for PN 8 were ob- 

erved, which were attributed to the consecutive reduction steps 

f three pyrazine moieties [22] . The onset of the first oxidation 

E ox ) and reduction onset (E red ) was 0.37 eV and −1.17 eV, re-

pectively. The corresponding ionization potentials (IP) and elec- 

ron affinities (EA) energy levels were thus estimated to be 5.03 

nd 3.53 eV, respectively. Compared to S,N-PAH, the reduced EA 

nergy level for PN 8 was ascribed to the electron-deficient nature 

f the fused HAT part. On the other hand, according to DFT calcu- 

ation results, the calculated PN 8 adopted a highly planar config- 

ration, with the LUMO electrons delocalized over the HAT moi- 

ty, whereas the HOMO electrons unevenly distributed over the 

hiophene-fused 1,10-phenanthroline part ( Fig. 2 d). It is notewor- 
2 
hy that the calculated dipole moment of PN 8 is larger than that 

f S,N-PAH, possibly due to the joint effects from the π-expanded 

ore and more doped nitrogen atoms (Table S1 in Supporting in- 

ormation). 

As a large conjugated disc molecule with a strong local dipole, 

N 8 was readily to self-assemble into anisotropic superstruc- 

ures. The self-assembled behavior of PN 8 was first examined by 

oncentration-dependent 1 H NMR spectra. As shown in Fig. S1 

Supporting information), all the aromatic signals shifted upfield 

nd became less-resolved with the concentration increasing. This 

ndicated that PN 8 formed stacked assemblies in which the aro- 

atic protons were placed in the shielding regions produced by 

he neighboring aromatic rings. The peak assigned for –OCH 2 pro- 

ons also became broad and non-splitting at high concentration, 

mplying that the alkyl chains were also involved in the assem- 

ly process [23] . Morphological study based on scanning electron 

icroscopy (SEM) technique also confirmed the formation of mi- 

rofibrils with high aspect ratios. For instance, in THF or mixed so- 

utions, either three-dimensional networks composed of interdigi- 

ated long and rigid microfibers (in chloroform/acetone), or flexible 

igh aspect ratio microwires (in chloroform/methylcyclohexane) 

ere observed, with the widths in the range of 10 0–40 0 nm 

nd the lengths up to tens of micrometers (Fig. S2 in Support- 

ng information). Interestingly, these well-ordered 1D assemblies 

ould experience reversibly morphological transitions upon alter- 

ate treatment with metal ions and EDTA solution. As shown 

n Fig. 3 a, when Cu 

2 + or Zn 

2 + was added to the PN 8 suspen-

ion, the initially formed fiber structures quickly crashed, result- 

ng in ill-defined nanoaggregates. And the regular 1D assemblies 

ould be re-generated when the resulted solution was treated with 

DTA. Accompanied with morphological changes, appreciable color 

hanges of the suspension and solutions could be easily detected 

y naked eyes ( Fig. 3 b). Such transition cycle can be repeated many

imes without the chemical decomposition of PN 8 , indicating the 

xistence of supramolecular interactions between PN 8 and metal 

ons. 

These results inspired us to further explore the ion-sensing 

roperties of PN . Its responsive behaviors in dilute solution were 
8 
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Fig. 3. (a) SEM images of assembled PN 8 from THF (left), then treated with Zn 2 + 

(middle), followed by treatment with EDTA (right) and (b) the corresponding pho- 

tographs. 

Fig. 4. (a) UV-vis absorption and (b) fluorescence spectra of PN 8 in chloroform 

(1 × 10 −5 mol/L, λex = 445 nm) with addition of different metal ions (4 equiv.), 

and the corresponding photographs under visible light and 365 nm UV light. (c) 

Job plot for the PN 8 –Cu 2 + system. [PN 8 ] + [Cu 2 + ] = 0.1 mmol/L. (d) 1 H NMR spectra 

of PN 8 and PN 8 with 4 equiv. metal ions in CDCl 3 . 
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Fig. 5. (a) Photographs of glass pipettes filled with PN 8 powders under daylight and 

UV light before and after adsorption of Cu 2 + and Zn 2 + (1 × 10 −3 mol/L). (b) The ion 

concentrations before and after the aqueous solutions were filtrated. 
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creened by adding different cations, like Al 3 + , Cd 

2 + , Co 2 + , Cu 

2 + ,
e 3 + , Na + and Zn 

2 + . PN 8 was found selectively responsive to Cu 

2 + 

nd Zn 

2 + . In detail, the addition of Cu 

2 + and Zn 

2+ led to the

ed-shift of absorption onset, so the color of the solution be- 

ame deep yellow ( Fig 4 a). More remarkably, according to FL spec- 

ra ( Fig. 4 b), Cu 

2+ caused almost complete fluorescence quenching, 

hile for Zn 

2 + , not only the decreased fluorescence intensity, but 

lso a distinct red-shift emission color was detected for its mixed 

olution. The emission maximum varied from 547 nm to 630 nm 

fter the treatment of Zn 

2 + . Under the same conditions, an in- 

rease of emission intensity was observed after Al 3 + or Fe 3 + was 

dded; while a slight decrease after treated with other ions. The 

nhanced emission might be due to the Lewis acidity of Al 3 + and 

e 3 + , as a similar phenomenon appeared after TFA was added to 

he PN 8 solution (Fig. S3 in Supporting information). In contrast 

o Cu 

2 + and Zn 

2 + , such fluorescence change of the solution upon 

reated with the other tested metal ions was not readily discrimi- 

ated by naked eyes, therefore, PN 8 is promising to serve as a flu- 

rescent optical probe for metal ions, such as Cu 

2 + and Zn 

2 + . 
Following, the detection limit was evaluated on the basis of flu- 

rescence titration experiments [24] . The plot of fluorescence in- 
3 
ensity of the PN 8 (1 × 10 −5 mol/L) vs. concentrations of Cu 

2 + in 

HCl 3 displayed a good linear relationship with R 2 of 0.9878 dur- 

ng titration. The limit of detection (LOD) for Cu 

2 + was determined 

o be 8.71 × 10 −7 mol/L for PN 8 (Fig. S4 in Supporting informa- 

ion) based on LOD = 3 σ / k , where σ is the standard deviation of

lank measurements and k is the slope. Meanwhile, the fluores- 

ence wavelength of the solutions showed a good linear relation- 

hip ( R 2 = 0.9954) with the concentration of Zn 

2 + , with LOD for 

n 

2+ determined to be 8.57 × 10 −8 mol/L. Both values are compa- 

able to many reported ones [ 15 , 25–27 ]. 

To shed more light on the ion-sensing mechanism, a set of 

xperiments were carried out. First, no optical changes were de- 

ected after the acidification of PN 8 solution, therefore, the respon- 

ive properties of PN 8 towards Cu 

2 + and Zn 

2 + presumably derived 

rom pH variation or protonation could be excluded. Also, the con- 

rol compounds S,N-PAH and the thiophene-fused phenanthroline 

art alone TP were found not responsive to metal ions (Fig. S5 

n Supporting information). Based on these facts and combined 

ith the molecular structure, we inferred a binding mechanism 

ainly arisen from the fused HAT unit. Although attempts to ob- 

ain single crystals of PN 8 with Cu 

2 + or Zn 

2 + were not success- 

ul, MALDI-TOF mass spectroscopic measurements on the mixtures 

f PN 8 with the two metal ions could provide valuable informa- 

ion on the complex structures [13] . Typically, as for the mixture 

f PN 8 and Cu 

2 + , a strong peak at m/z of 1172.93 was observed,

hich was corresponding to the m/z of [1[PN 8 ] + Cu 

2 + -H 

+ ] + , thus

uggesting the prevailing of the species in the form of 1:1 binding 

ode (Fig. S6 in Supporting information). Furthermore, the bind- 

ng stoichiometry between PN 8 and the ions was explored via UV–

is spectroscopic titration with a fixed concentration of 0.1 mmol/L 

28] . A peak in the obtained Job plot at the molar fraction of 0.5

as found ( Fig. 4 c), again confirming the 1:1 (or n:n) binding sto- 

chiometry. In addition, according to the 1 H NMR spectra, the pro- 

on signals of the PN 8 and Cu 

2 + mixture disappeared (for aromatic 

rotons) or became less-resolved (for alkyl protons), which sug- 

ested a shielding effect very likely caused by supramolecular in- 

eractions between PN 8 and Cu 

2 + ( Fig. 4 d). Similar results were 

ound for Zn 

2 + , except for the possible co-existence of two com- 

lexes ([1[PN 8 ] + Zn 

2 + -H 

+ ] + and [2[PN 8 ] + Zn 

2 + -H 

+ ] + ), since there

ere two peaks at m/z of 1173.22 and 2288.70 according to MALDI- 

OF mass spectroscopy (Fig. S7 in Supporting information). Taken 

ogether, these characterizations jointly manifested the good selec- 

ivity and sensitivity of the ion-sensing/binding properties of PN 8 

owards Cu 

2 + and Zn 

2 + , in colorimetric and fluorometric modes. 

Since PN 8 was not soluble in water and showed excellent and 

eversible metal ions binding ability in solution, its application as a 

olid-state adsorbent to remove Cu 

2 + and Zn 

2 + from aqueous solu- 

ions was examined. For demonstration, a small-size column with 

N 8 powder as the filler, methanol and water as the eluent was 

abricated. As shown in Fig. 5 a, the pristine powder was yellow and 

mitted bright yellow fluorescence. Then, after the aqueous solu- 
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[  
ions of Cu 

2 + or Zn 

2+ were poured into the column, the successful 

dsorption of Cu 

2 + and Zn 

2 + could be observed with the color of 

he column changed to brown and orange, respectively. And un- 

er UV light, the corresponding column exhibited either quenched 

mission or orange fluorescence. All these changes were consistent 

ith those in the solution. At the same time, the metal ion concen- 

ration before and after filtration was measured by ICP-MS ( Fig. 5 b) 

29] , which confirmed that a small amount of PN 8 (10 mg) could 

emove most of the Cu 

2 + and Zn 

2 + from the respective aqueous 

olution (1 × 10 −4 mol/L, 4 mL). The removal efficiency was es- 

imated to be 54.27% and 44.30% for Cu 

2 + and Zn 

2 + , respectively, 

ndicating good absorptivity of PN 8 (Fig. S8 in Supporting informa- 

ion). Notably, benefiting greatly from its large PAH core, PN 8 was 

ighly hydrophobic and stable. So compared to other HAT-based 

aterials, PN 8 is more suitable to be utilized as an optical ion 

robe and adsorbent, particularly in solid state, with the merits of 

igh (fluorescence) color contrast, good stability and recyclability 

30–35] . 

In conclusion, we have successfully synthesized a new HAT 

ased, large PAH disc molecule (PN 8 ). PN 8 exhibited fluorescent 

ensing characteristics, which was selective for Cu 

2 + and Zn 

2 + 

ver many other ions. The enlarged PAH core (up to 11 fused 

romatic rings) and the doped hetero atoms endowed PN 8 good 

nisotropic self-assembly ability, metal-ion binding affinity and 

ronounced optical properties. Therefore, in self-assembled state, 

evisable morphological transition was found upon the alternate 

reatment of ions and EDTA. In solution state, the two ions trig- 

ered highly appreciable optical changes with high (fluorescence) 

olor contrast and low detection limits, which were proved mainly 

ased on the metal ion binding mode in different stoichiomet- 

ic ratios. Importantly, due to its good stability and efficient ion 

inding capability, PN 8 was demonstrated as an excellent adsor- 

ent to remove Cu 

2 + and Zn 

2 + from wastewater. The current work 

hus will not only enrich the family and the functions of hetero- 

tom containing PAHs, but also be helpful for future applications 

f HAT-embedded disc molecules in advanced fluorescent sensing 

nd imaging, water treatment and so on. 
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