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Thin-film transistors based on organic semiconductors (OTFTs)

have attracted great scientific and technological interest in the quest

for “plastic” electronics: The basic OTFT structure includes three

contacts (source, drain, gate), a dielectric, and a semiconductor

(Figure 1), with the latter functioning as eithepachannel (hole-
transported or n-channel (electron-transporter) charge cadier.

OTFT p-channel semiconductors have been widely studied and have
achieved acceptable device performance and stability. For example,

OTFTs based on acene filésand single-crystafscan attain hole
mobilities un > 1 cnm?/(V s) in ambient. In contrast)-channel

Au (Source) | | Au (Drain)

Semiconductor
#—CiHy; (ADIS)

Rl L IR Ko7 aoicy) Coter -
°  ADR K@mmm ADIB-CN2
Si0, (Dielectric)
p*-Si (Gate)

Figure 1. Schematic representation of OTFT device components and
chemical structures of the ADI semiconductors.

organic semiconductors remain problematic because of the inherenteores are easilg-dopable electrochemicafiynd those of Wasielews-
electron trapping tendencies of many materials, especially at theyj on cyanated rylenes: The Er; of ADIR (Figure 1), where R

semiconductordielectric interfacé. In principle, there are three
approaches to mobilize/stabilize field-effect-derived electféria)
use strongly electron-deficient-conjugated cores; (b) employ

= bulky 4+-butylphenyl, was reported to be cal.l V (vs SCE}
and, as in the case of perylenedicarboximide (PDI) derivatives,
should be relatively insensitive to N-substitution. From our recent

p-channel materials but eliminate deep electron trapping sites by studiest ADIRs should have the electronic energetic characteristics

passivating the dielectric surface; (c) functionalize conventional
p-channel cores with powerful electron-withdrawing and/or hydro-
phobic substituents. Indeed, high mobilitchannel semiconductors
have recently been realized with these approagti&ome of these
materials exhibit a combination of excellent TFT performance both
in vacuum fte ~ 0.3—0.6 cn®/(V s); lon/lof & 107—1C°; Vi ~ +30

to 50 V) and in ambientue ~ 0.1-0.6 cn?/(V S); loy/loff ~ 10°—

10 Vin ~ —30to 15 V). However, a critical characteristic of high-
mobility air-stablen-channel materials has been the relatively low

of stablen-channel semiconductors but the corresponding OTFTs
should not operate in air. However, DFT computatinmedict
that CN functionalization at the anthracene 9,10 positions should
displaceEr; to ca.—0.2/~0.3 V, more negative than core-cyanated
perylenes Er; ~ 0.0 V), but within the air stability window. We
report here that this design strategy achieves the aforementioned
goals.

The synthesis of core-unsubstituted ADIRs (Scheme 1) involves
two simple steps: (a) 1,2,4,5-tetramethylbenzene bromination, (b)

lo/lof ratios and large negative threshold voltage shifts versus the Diels—Alder cycloaddition/aromatization of 1,2,4,5-tetrakis(dibro-

corresponding air-sensitive systerrthey are difficult to “turn
off”.36 The large electron affinities of known air-stalsiechannel

momethyl)benzene with the requisitéalkylmaleimide. The ad-
vantages include mild reaction conditions, good vyields, and

cores which prevent electron trapping also enhance sensitivity to straightforward product purification via reprecipitation/sublimation.
electron-doping from the metal contacts and/or donor sites in the The structures and purities of the new ADIRs were verified by

dielectric. An empirical first reduction potentigtg;) window for
both stable TFT electron conduction and low doping levels is
derived by analyzing the redox properties of several rylene/
oligothiophene-based-channel semiconductors developed in our
group3"8 WhenEg; < —0.6 V (vs SCE), the material may be an
n-channel semiconductor but not air-stable. Wikga = —0.6 to
—0.4 V, the onset ofh-channel stability begins. However, fé&k;

> 0.0V, significant doping becomes evident and device current
modulation is difficult to control. Therefore, semiconductors with
anEg; ranging from—0.4 to 0.0 V should result in TFTs exhibiting
both stable electron transport in air and minimal doping (Ie.
Note that semiconductor film morphology optimization may also
play a role in stabilization of TFT transpatt.

In this Communication we report a new electron-deficient
semiconductor family based on the anthracenedicarboximide (ADI)
core. The goal here is two-fold: (1) demonstrate a meshannel
semiconductor family for OTFTs; (2) tune electron affinity to
achieve air stability while maintaining lows currents atVsg =
0.0 V — enhancd,/lq ratios. This work finds inspiration in the
pioneering studies of Miller showing that linear acenedicarboximide
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elemental analysidH NMR, and mass spectrometry (see Support-
ing Information).

The electrochemical properties of these new anthracenedicar-
boximides reveal important aspects of electronic structure and
substituent effects (Table 1). ThusDI8, ADICy, and ADI1Ph
exhibit comparablég;s (—1.1 to—1.2 V, Figure S2y-much less
negative than that of parent anthracené.Q V). As expected, such
redox potentials are still close to the overpotentials required for
reactions involving @ (~1 V), strongly suggesting that ADIR-
based FETs will not operate in ambient conditiéhs.

Top-contact OTFTs were fabricated oni-8i/SiO, substrates
(Figure 1). Typical currentvoltage plots are shown in Figures 2
and S2, with carrier mobilities calculated in saturation from the
equationusa = (2lspL)/[WGCx(Vse — Vin)?. The positive gate and
source-drain voltages demonstrate that these ADIRg-ate@nnel
materials. Tables 1 and S1 summarize TFT response for HMDS-
treated and untreated Si/SiQGubstrates, respectively. Electron
mobilities as high as 0.02 &V s) andl,yloi ~ 107 are achieved
in vacuum. Photoconductivity measurements of anthracene single
crystals reveal comparably high hole and electron mobilitiest,

10.1021/ja073306f CCC: $37.00 © 2007 American Chemical Society
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Scheme 1. Synthesis of Anthracenedicarboximides both stable electron transport in air and ltyy. Similarly to other
a rylene TFTSs, the present devices are sensitive to the combined action
r Br; [o] . . .
:@:sz szHcI:(c”sz — ADI8 of humidity and sunlight. However, the performance of devices
2 R=Ci) ° 0 "“"AD'CV tored in air with exclusion of light ins stable for at least 4
BrHC” 7 “CHBr, _Cs)w Y7y ADIPh stored in air with exclusion of light remains stable for at leas
5 (R c|)-l|2Ph) B Ver months after fabrication (Figure S5). Finally, ADIR core cyanation
strongly enhances solubility. Films 8DI8-CN2 can be spin-cast
Table 1. Electrochemical? and OTFT? Data for ADI Derivatives on a solution-processed 100 nm-thick CPB gate dielé2iord-
Ew u Vin s ing ue ~ 0.001 cnd/(V s); loylorr > 10P; Vi =~ 0 V.
compound v) (cn?(V s)) oo/t V) (Videc) In summary, we report a nemtype TFT semiconductor family
anthracene  —1.92 0.02 ~10¢ —10 based on anthracenedicarboximida®I8-CN,—based TFTs ex-
ADI8 -117  0.02 4< 10" +45 2.0 hibit good electron mobility e up to 0.02 cr¥(V s)), very high
ADICy -117 o001 5<10° 435 2.9 lo/lor > 107 in ambient conditions as a consequence of balanced
ADILPh “L12 0.01 210 45 41 lectron affinity. Studi re underway to enhangby variation
ADIS8-CN2  -0.33 0.03(vac) & 10 +10 1.9 electron affinity. Studies are underway to enhangey variatio
0.02 (air) 2% 107 +15 1.9 of N-substituents. Note that within the core-cyanated perylene

aIn CH.CI; (vs SCE) solution (0.1 M BiINPF; electrolyte), Pt electrode.
Scan rate: 100 mV/s. Fc/Eq0.52 V vs SCE) internal referenceFilm
growth temperature is 98C. ¢ Single crystal (ref 13).
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Figure 2. |-V transfer plots for vapor-deposite@iDI8-CN2 films in

vacuum (A) and air (B) on HMDS-treated -S6iO, substrates and as
solution-cast films on a solution-processed CPB insulator in air\(€) =
100 V.

Scheme 2. Synthesis of the Core-Cyanated ADI8-CN;
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in contrast to other acenébsanthracene—based FETs perform poorly

unless single crystals are employed fliechannel semiconducté?.

Therefore, compared to anthracene, introduction of the diimide

groups andN-hydrocarbon functionalization strongly affects frontier
MO energies, enablingi-channel conductivity and film self-
organization on the insulator for efficient charge transport.

We next synthesized 9,10-core-cyanated ADIs, starting with

ADI8-CNZ2. Since attempts to brominad®I8 were unsuccessful,

we developed a synthesis starting from tetramethylbenzene (Scheme
2). Interestingly, bromination of the dibromotetramethylbenzene

does not proceed to the tetrakis(dibromomethyl) derivath)e (
probably because of steric hindrance. Cycloadditiod afith 2a
affords cores, which is aromatized with BfEGN to 7, and finally
dicyanated to afford\DI8-CN2 in 25% overall yield. OTFTs based
on ADI8-CN, operate in air (vacuum) and exhilif = 0.02 (0.03)
cné/(V s); Lol > 107 (~107); Vi ~ +15 (+10 V) (Figure 2).
Note the very higHo/l o ratios and positivé/y, for this system, in
agreement with the enhanced electron affinityVV hysteresis is

negligible (very small) for the devices measured in vacuum

(ambient) (Figure S3). From cyclic voltammetilgg; of ADI8-
CN2 is —0.33 V (Figure S4), in agreement with theoretical
expectation¥ and the ambient TFT stability characteristics.

Consequently, these results provide additional evidence that a redox

window betweenEgr; = —0.4 and 0.0 V is essential to achieve

family, optimizedu, varies by>10x with proper N-substitutiof.
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